
Web engineering for mobile devices

Kai Hendry

Helsinki 28th February 2005

M.Sc Thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

Faculty of Science Department of Computer Science

Kai Hendry

Web engineering for mobile devices

M.Sc Thesis 28th February 2005 62 pages

Accessibility, Mobile, user interface standards, WAP, Web engineering

Kumpulan tiedekirjasto

Unleashing information applications to a profound audience is proposed via the pop-
ular mobile device and de facto Web technologies. Incompatible application program
interfaces (API) such as WAP are criticised in favour of unifying application devel-
opment on the Web API with every device supporting a capable Web user agent.
The consequences of using separate APIs for differing devices are found to result in
complex and costly device dependent information applications.

Misconceptions of the limitations of the mobile device are explored, in order to show
the mobile as a capable information device. Milestones are plotted beginning with
WAP enabled phones, basic HTML enabled mobiles of today and to a future where
a mobile Web UA effectively supports a generic Web mail application.

Different Web engineering methodologies for mobiles are evaluated, with recommen-
dations for a device independent approach in the long term and UA support via
device dependent proxies in the short term.

Further research is suggested with a emphasis on the need for a scalable bitmap image
format. The thesis concludes by highlighting the shared responsibility of mobile
stakeholders to propel a unified computing future through the Web API.

Instead of engineering applications for the device, the thesis presents argumentation
to engineer for the Web medium.

Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

Glossary 1

1 Introduction 4

1.1 Scope . 4

2 First generation of the mobile Web 5

2.1 Environment . 7

2.2 WAP Forum . 10

2.3 SMS . 16

2.4 CHTML . 18

2.5 W3C’s Web . 19

3 Second generation of the mobile Web 22

3.1 Environment . 23

3.2 OMA . 28

3.3 W3C . 34

4 Engineering approaches 37

4.1 Device dependent engineering . 37

4.2 Adaption . 43

4.3 UA support . 45

4.4 Device independence . 46

5 Outlook 50

References 52

A Acronym and Abbreviation Tool (AAT) screenshots 57

Glossary

Accesskey A markup mechanism for defining a keyboard shortcut

API Application Programming Interface

Browser See UA

Browsing based navigation Hyperlinked document-based navigation where users move
through an interface without a specific goal in mind

CC/PP Composite Capability/Preference Profile. A RDF based language for de-
scribing a device

CHTML Compact HTML. Also written as cHTML

CLDC Connected Limited Device Configuration

CPU Central Processing Unit

CSS Cascading Style Sheets, which are used to define stylistic attributes to content

Desktop Also known as a workstation. The familiar fixed networked personal com-
puter, with powerful processors, large displays, sound output, large amounts
of memory and persistent local storage.

ECMAScript The javascript programming language defined by the ECMA-262 stan-
dard for performing browser-side actions.

GPRS General Packet Radio Service

GSM Global System for Mobile communications

HDML Handheld Markup Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

I-mode Information Mode by NTT Docomo of Japan

Inline A Web page component such as an image or a sound accompanying the page.
They are automatically downloaded as part of the page rather than those
shown only when you select their link.

IP Internet Protocol

IT Information Technology

MIDP Mobile Information Device Profile

2

MIME Multipurpose Internet Mail Extensions (RFC 2045/2046/2047/2048/2049,
IETF)

MMI Man Machine Interface, or just interface

MMS Multimedia Messaging Service

Mobile Small sized, light weight wireless computing device. Primary use is that of
a phone. Extended battery life.

PC Personal computers, also know as desktop PC, or just desktop

PDA Personal Digital Assistants

RAS Remote Access Service, usually in context with a Internet dialup service with
a modem

RDF Resource Description Framework

Scalability A technique that is as suitable for a small amount as it is for a large
amount and vice versa.

SGML Standard Generalised Markup Language

SMS Short Message Service, used for instant text messaging

Tag soup The term“handled as tag soup”refers to how UAs in reality liberally parse
HTML. The parser is neither an XML or SGML parser.

Transaction based navigation Multistep goal orientated navigation for performing a
set task

UA The user agent (UA) is the client application that requests a document from
an HTTP server. Browsers are examples of user agents, as are Web robots
that automatically traverse the Web collecting information. [Wor01]

UAProf User Agent Profiles [KRW+04]

URI or URL Uniform Resource Identifiers or Uniform Resource Locater

Validator An application which is used to check the validity of HTML markup, for
example to detect bad or deprecated elements. A validator helps to ensure
that the document can be parsed and used by all user agents.

W3C World Wide Web Consortium

WAE Wireless Application Environment

Web Accessibility Web access by everyone regardless of disability

WML Wireless Markup Language

3

WWW World Wide Web or just Web

XHTML The Extensible HyperText Markup Language is a family of current and fu-
ture document types and modules that reproduce, subset and extend HTML,
reformulated in XML.

XML XML (Extensible Markup Language) is a meta-syntax, used to create new
languages

XSL Extensible Stylesheet Language (XSL) is a language for creating a style sheet
that describes how data sent over the Web using the Extensible Markup
Language (XML) is to be presented to the user.

XSLT XSL specifies the styling of an XML document by using XSLT to describe
how the document is transformed into another XML document that uses the
formatting vocabulary.

4

1 Introduction

Accessing the Web from a mobile is a Web engineering problem. The Web’s pre-
sentational markup is designed for the desktop PC, which makes Web content and
services difficult to scale down to a mobile. This problem blocks an important av-
enue of information access for many people who are more likely to have a mobile
device than a desktop device. If parts of the Web are unavailable to mobile users,
it will fragment and devalue the notion of the universal information interface.

The original application of the mobile device is voice communication. However the
mobile device does have a limited means of input, display and growing computing
power to provide a platform for an information service. Today popularity of mobile
devices is only matched by the Web, where trends indicate the Web being the most
important information service space [Ree02]. Facilitating Web access from a more
common wireless mobile device could yield an era of information accessibility to usher
in the European Union’s goals of an Information Society [Eur04]. These converging
worlds of the wired Web and wireless mobile raise several research problems, from
how to produce, retrieve, render and interact with information in order to make the
mobile a viable, usable and accessible information appliance.

The thesis is chronologically organised to assess significant past and current mobile
related developments in research and realised implementations. Each generation of
the mobile device is defined in the context of its typical capabilities and operating
environment. Mobile software implementations of technologies providing informa-
tion services are evaluated along with their troubled relationships. These application
technologies include WAP’s WML, GSM’s SMS, NTT Docomo’s CHTML to W3C’s
XHTML and an analysis of how they are converging [HMK98].

Engineering device independent information services [Kir02] is an integral theme
for solving the thesis question of how limited mobiles and the information services
of the Web converge. Research offers differing approaches to mobile information
access [Mar02] [Ran03] [MPS03] [BKGM+02], the W3C and the mobile industry
implementations of WAP/OMA. The W3C portfolio of mobile related technologies
[DKMR03] [KRW+04] [BIM+00] [WDSR02] [CVJ01] and working groups [Wor01]
will be the benchmark when evaluating different approaches for discerning Web
content.

1.1 Scope

The application layer is the focus in the thesis and hence bearer networks, network
protocols and bandwidth efficiency will not be covered in detail. The application
layer will focus on the markup language of the information. Backend application
server logic and Web applications will not be covered. The thesis will concentrate
on the European Union mobile markets, as opposed to different and difficult envi-
ronments abroad. Mobile device platforms will be biased towards the market leader
vendor Nokia. Mobile computing devices such as laptops are excluded from the

5

thesis by their similarities with desktops and their comparatively short battery life.
Voice based information services provided by VoiceXML and other related speech
technologies will not be included in the thesis. Other advanced telephony services
such as location-based services will not be addressed. Multimedia applications and
proprietary plugins will be largely avoided in order to concentrate on the basic yet
challenging problem of delivering text based content to the mobile.

The thesis alternates between the terminology Web author, engineer, publisher,
designer, developer and so forth. They all describe the person who contributes
content or services to the Web via the Web API. We take the approach that there
is no separation of concerns when it comes to developing for the Web.

Making the Web available on the mobile is related to the usability field, interna-
tionalisation efforts, accessibility of the disabled, affordability, content scalability,
interoperability standards, multi-modality and device independence. Notice many
of these fields overlap, as device independence is defined by the W3C as “Access to a
Unified Web from Any Device in Any Context by Anyone”[Wor01] demands several
disciplines. This thesis concludes by offering insight into past, current and future
technological trends for realising the ubiquitous information application.

2 First generation of the mobile Web

There are a wide range of mobile devices such as Personal Digital Assistants(PDAs),
book readers, smart watches, pagers and car navigation systems. However in this
thesis, the focus is on the popular handheld wireless cellular mobile phone device
or just mobile as it is referred to here. Mobiles equipped with information services
are also called “enhanced phones” by the industry [Gar04]. The mobile device or
simply mobile is defined as a small battery powered wireless Internet networked
computing device. Fast paced technological progress has swept the terms multimedia
and network PC aside and likewise small computing devices will evolve to make the
term mobile out dated. For example the mobile we know now could be permanently
fixed on a kitchen wall in the near future [BL04].

The mobile’s primary purpose is for voice communication across cellular networks.
There were as many as 500 million GSM users worldwide in the year 2001 and now
in 2004 more than 1000 million users worldwide according to the GSM association
[EMC04]. Strategy Analytics says global sales of mobile phones hit a record of
516 million in 2003, with a predicted 13% growth expected in 2004. The mobile
device market leader at 34.8% is the Finnish company Nokia [BBC04]. In Europe
Mobile penetration is over 70% [Web04a], with the GSM association’s 147 European
members claiming to have 425 million users in December 2003.

The World Wide Web (or Web) is the universal information space of the Internet.
The Web’s open distributed architecture provides information services with global
identifiers called Uniform Resource Identifiers (URIs) [Jac03]. The Web in contrast
is accessed typically by a powerful desktop personal computer, which is referred

6

to and described as the desktop computer. Determining the amount of desktop
Web users to compare to mobile users is difficult. One can argue the boom of
the IT bubble at roughly the same time period indicates explosive growth. The
latest measurements indicate the American online Internet population is at least
200 million users strong [Nie04]. In Europe figures by eMarketer [Rya04] claim that
Europe will have 255 million Internet users by 2004. However mobile subscriptions
outstrip Internet subscriptions all over Europe according to Gartner in 1998. Despite
these tentative market statistics, we can conclude that mobile users out number
desktop users making the mobile the eminent consumer computing device.

The stakeholders involved with the mobile Web are:

• Mobile device manufacturer. e.g. Nokia or Motorola

• Operating system platform provider or vendor, e.g. Symbian or GNU/Linux

• Mobile operators or network service providers. e.g. Vodafone or Radiolinja

• Web developer or author. A Web application provider such as Google or
Amazon.

• User agent or browser developer, such as Opera or Mozilla

• Web user, surfer or consumer. The person who requires all of the above via a
user agent to access the Web

• Standards authorities. Such as the OMA, W3C and GSM association

On desktop systems the device and platform components are blurred between the
PC hardware manufacturers such as Dell and the operating system Windows with
a bundled user agent Internet Explorer. Nokia arguably fill these roles, with their
mobile products providing the hardware device, their operating system and often
including their own in house user agent for browsing the Web.

As mobile communications have not been a part of the Internet communications,
these domains have diverged by rapid developments in recent years. If the Web can
be accessed by the mobile device this would allow millions of more people to have
convenient access to information. Bridging this divide between mobile and the Web
is hence crucial for realising an Information Society [Eur04] by allowing millions of
more people access to the information interface of the Web.

The mobile was seen by the industry as a viable platform for information services
as early as 1997, whilst Internet users have been up to this point using a desktop
computer to access information. The next section discusses the differences between
devices at this early period and subsequent sections show how initial attempts to
create a mobile information appliance began.

7

First generation of the mobile Web
December 1996 W3C CSS, level 1
January 1997 W3C HTML 3.2
December 1997 WAP Forum founded
February 1998 CHTML Note to W3C
April 1998 WAP 1.0
December 1999 W3C stops working on HTML
June 2000 WAP 1.2.1

Second generation of the mobile Web
December 2000 W3C XHTML Basic
January 2002 WAP 2.0 white paper
June 2002 WAP Forum consolidated to OMA
January 2004 Composite Capability/Preference Profiles

Table 1: Timeline of the mobile information appliance

2.1 Environment

In this thesis we are concerned with access to information services via the mobile.
The mobile’s typical characteristics however poses hardware restrictions, that need
to be considered. First and foremost, a mobile is a telecommunication device for
voice communication. Most mobiles are designed to be operated as a telephone
handset, held in one hand between your ear and mouth. As the device is designed
for voice communication, one might consider the device better suited for accessing
informational voice content. Besides the technical demands of a voice operated mo-
bile, character based or text content is a far more efficient way to access information
for a variety of reasons. Text is not time dependent as the speech equivalent is. A
user can naturally choose any speed from to re-reading slowly, or skim over large
amounts of text at leisure. Text is also much more versatile and can by easily ma-
nipulated. For example text can be redirected to different outputs such as a braille
terminal for the visually impaired to access. Voice interfaces are often intrusive or
difficult to use in crowded and noisy mobile environments.

Therefore text displays complemented even the earliest mobiles, with battery and
connectivity information and typical extras such as an address book. These displays
evolved to a generic 2 to 5 line display from which the mobile information appliances
originated.

Most of the specifications in table 2 are especially variable with the mobiles’ hard-
ware range. The screen size in pixels is probably the most significant difference
between the mobile and desktop. Mobile screen resolution area are typically less
than 5% of their desktop counterparts. Knowing the screen resolution does not
necessarily allow you to conclude how many lines of text or how many rows and
columns the device can render. A high resolution device might display one line of
text, whilst a low resolution device could tightly pack a large amount of text on the
screen. However a higher resolution screen does help the legibility of text, therefore

8

Characteristic Mobile Desktop

Screen resolution 50x30 to 150x100 640x400 to 1024x768
Screen Colours Monochrome 16 bit
Fonts Single Several
Software upgradable No Yes
SMS Yes No
Input Non-standard numeric based Qwerty keyboard + mouse
Network Non-IP IP
CPU Power Low High
Data storage Very limited (<1M) Large and versatile
Power supply Limited Unlimited

Table 2: Broad comparison between first generation Web devices [Kam98]

a higher resolution screen indicates that more text can be rendered.

First generation mobiles’ displays supported text and some simple graphics too.
Those that did support graphics could only render them if they were within the
resolution of the mobile screen and only in reduced 1 bit format. Another limiting
feature of mobile graphics displays were that sometimes the pixels were not quite
square, but rectangular so authors needed to remap their image to take this into
account in order to make the image look correct. Styling elements using colours and
differing fonts and sizes were not well supported at this stage, including more logical
styles of emphasis were not implemented either. This generation of the mobile device
typically had only support for a Western European character set, which usually
required text in different languages to be transliterated. The desktop user agents at
this stage had far better international support.

As mobiles have a history of being difficult for users to upgrade and maintain, they
are often referred to as appliances instead of machines. An appliance has restrictions
whereby you throw away and replace if something goes wrong, whilst a machine
allows the freedom to be maintained and repaired.

The Short Message Service (SMS) is an instant message service available on the
GSM network for mobiles and not part of the Internet domain. An interoperable
device independent information messaging service would been of great benefit of
unifying the desktop and mobile device and pave the way to multimodal access to
small texts. At least SMS has shown the mobile as capable information device in
section 2.3.

Inputs on mobile phones typically have several control buttons and the number
buttons (0-9). The popular WAP phone pictured in figure 1 also has a proprietary
NaviRoller(tm), which assists page scrolling. Some other mobiles had touch screen
interfaces. Importantly there is no standard on what or how inputs are laid out on a
mobile. Whilst on a desktop a qwerty keyboard and mouse have become a de facto
standard.

GSM networks allowed mobiles to restrictive access to the Internet via dial-in servers

9

(GSM data). The wireless characteristics of a narrow channel made connecting to the
Internet a slow, unstable and expensive operation [KAIM99] compared to desktop
access. The network usually was a non-IP connection, although all these connectivity
restrictions largely depend on underlying communication bearers.

Figure 1: Nokia 7110 WAP mobile phone

Data memory storage limitations were an acute problem with the first mobiles
equipped with WAP. Each mobile generally has its own unique size limits. This
makes it extremely difficult to develop for, as the developer may find their applica-
tion unable to fit on the mobile whilst it did on another. Desktops computers of the
same era had many times the memory size and other significant software advantages
such as virtual memory provided by the operating system. Mobile CPUs are in the
1-10 MIPS class like many other embedded systems. Desktop CPUs have hundreds
of times more CPU power.

Electrical power supply of a mobile is restricted to a battery, which degrades over
time. Desktops are always connected to mains AC power. Notice that CPU hun-
gry applications consume more power. Therefore mobiles with increased processing
power, also require better batteries. Mobile displays are often illuminated only
briefly to efficiently make use of the power. This often proves a nuisance when
reading text on a mobile.

The mobile can be and is typically operated whilst on the move, whilst a fixed
desktop is operated from a desk in a sitting posture. Reading and paging through
information in text demands concentration, hence it is worth considering that a
mobile user may have to assume a stationary stable posture when accessing certain
content too. However for the most part, the mobile is operated with one hand and
the informational content is just glanced upon whilst active or resting. A mobile
is also used in a hands-free environment, and is a legal requirement in several Eu-
ropean countries when driving. This mode of operation is referred to as “eye-less”.
Compared to the desktop the mobile device exhibits a different paradigm for device
usage in a dynamic mobile outdoors environment.

The output differences between a mobile and a desktop is an open scalability prob-

10

lem. The predominant information interface of the Web should be able to scale
to any output. In practise scalability means that content has to be of relative di-
mensions in order to be resized correctly. If the Web is unable to scale to different
outputs, then a new static medium is created specifically for each device (device
dependence). Each new medium for each device type risks redundant information
due to incompatible or different interfaces and being simply out of date with the
original content.

Ideally when you browse the Web with any device, the information would be the
same. For an example compare screenshots from different device user agents in
figures 12, 13, 14 and 15 at the end of the thesis. They demonstrate how the
information of the Web page scales between different devices. This demonstrates
device independence with no loss of information.

The term device independence is used to describe methods in which content is to be
widely deployed across any terminal or device. This in turn gives the Web greater
access to people who are without expensive fixed desktop computers and hence
part of the larger efforts of field of Universal accessibility of information. Device
independence shares principles of Web accessibility initiative (WAI) and that is
defined as Web access by everyone regardless of disability. Device independence
might bring the information to the mobile, but if the information is not usable such
as navigable or understandable then it is said to lack usability and accessibility.
Accessibility is not only about ensuring that disabled people can access information,
the meaning is often broadened to ensuring that the wide variety of users and devices
can all gain access to information.

In 1997 the WAP Forum was founded by GSM industry players Ericsson, Motorola,
Nokia and Unwired Planet. Their task was to standardise wireless information
services. This was prompted by large network operators unwilling to accept various
incompatible proprietary techniques for delivering services to mobiles offered by
vendors at the time. The WAP Forum is the authoritative source for the WAP
specification, a standard on first generation mobile information appliances.

2.2 WAP Forum

The Wireless Application Protocol (WAP) is the de-facto world standard
for wireless information and telephony services on digital mobile phones
and other wireless terminals.

Main Objective of the WAP Forum (1999)

The WAP Forum is unlike Internet standards organisations such as the Internet En-
gineering Task Force(IETF). The body charged a preventive entrance fee for mem-
bers and operated a closed design process, effectively excluding Internet engineering
veterans and small businesses. The WAP Forum objectives aimed to provide an
application framework leveraging digital data networking standards of mobile net-
working technologies and Internet technologies such as XML, URLs and content

11

formats. Their resulting product WAP is not a single protocol, but a list of proto-
cols and specifications for specific devices in a specific environment.

The first objective from the WAP architecture specification [WAP98a] was to bring
Internet content to digital cellular phones. Unfortunately at the time WAP was
touted as the “Web in your hand”, incorrectly implying that anything on the Web
was now available on the mobile. This was damaging, as WAP does not directly
combine Internet services with the mobile device. WAP uses the Wireless Markup
Language (WML), not the typical HyperText Markup Language (HTML) of the Web
and WML is not compatible with HTML. WAP Forum’s efforts were on providing
a channel for information services on the mobile device. In effect the WAP Forum
defined a new medium as if one wanted to transfer information from a printed media
source, email, the Web, one would have to transform it to fit into their newly devised
architecture under WML.

The second listed objective was to create a global wireless protocol specification to
work in differing wireless network technologies. WAP is a set of protocols reimple-
menting wireless counterparts of each member of the stack of Internet protocols for
wireless optimisation. The WAP Forum has been criticised for developing a new
set of protocols in a short space of time that increases the chances of design, im-
plementation and security flaws, instead of concentrating on improving the Internet
Protocols [Val00]. Recall from table 2 that mobile device software is not easy to
upgrade, therefore a long and expensive software testing is essential to ensure qual-
ity. It is difficult to determine why exactly the WAP Forum did not use existing
widely implemented Internet Protocol whilst others such as the Japanese company
NTT Docomo did. Although the technical details of how exactly NTT Docomo did
this are not publicly available. The WAP Forum departed from Internet standards,
separating information space by creating an incompatible divide between mobile and
Internet domains.

The third objective was to enable content creation that scales across a wide range
of bearer networks and device types. Content authors should not have to worry
whether or not their content will work on different mobile hardware. If they did,
then most authors tend to support the most popular mobiles and as a consequence
neglect others. Created content should just work by scaling across all devices, with-
out having the author to intervene. After all WAP is a standard for information
publication on mobiles, therefore it should prevent cases where authors are required
to fine tune the display of their content for different mobile devices. However WAP
Forum’s WML does not scale for reasons addressed later in this section.

The fourth objective was to embrace and extend existing standards wherever ap-
propriate. This is a point of contention. WAP Forum did embrace standards, by
basing their WAP stack on similar IP elements however they extended the original
standards with wireless optimisations without necessarily contributing back to the
standard’s process or ensuring compatibility. WML justifies this claim as a hybrid
between Handheld Markup Language (HDML) and HTML standards, that broke
compatibility with both formats.

12

Wireless Application Environment (WAE)

Wireless Session Protocol (WSP)

Wireless Transmission Protocol (WTP)

Wireless Transport Layer Security (WTLS)

Wireless Datagram
Protocol (WDP)

User Datagram
Protocol (UDP)

SMS, USSD, GPRS, CSD, CDPD, R-DATA...
Bearers

HTML

HTTP

SSL

TCP/IP
UDP/IP

Internet Wireless Application Protocol(WAP)

Figure 2: WAP architecture compared with the Internet’s Web [WAP98a]

The WAP Forum defined the Wireless Application Environment (WAE) as WMLScript,
Wireless Telephony Application (WTA, WTAI), content formats and Wireless Markup
Language (WML). WMLScript is a complementary technology to WML, loosely
based on a subset of ecmascript. WTAI offers telephony APIs to GSM network
functions for example to initiate a call from a WML page. WTAI will not be dis-
cussed as there is no commonly used existing scheme on the Internet to compare to
and it is not directly related to the thesis theme of Web accessibility. Besides many
mobile user agents had no implementations for WTAI. On the objective for defined
content formats, WAE defined phonebook, calendar formats as well as a new black
and white bitmap graphics format used in WML.

The WAP Forum’s specific approach to setting a standard for wireless information
appliances, sets a precedent. Their organisational objectives demonstrate a depar-
ture from device independence and Internet standards.

Wireless Markup Language (WML) is a tag based document language applied to
representing general information. WML is specified as an XML document type
and is specifically designed to support the small narrow-band constraints of the
mobile. WML is based on a subset of the Handheld Device Markup Language
(HDML) 2.0 [Hyl97], which is a significant departure from the HTML standards
utilised on the Internet’s WWW. Presentation tags were introduced from “physical”
markup elements in HTML, which contradicted W3C’s policy of the time to separate
content and style [LB96] and derided the importance of the logical, informational
and semantic markup.

HDML as a markup language is targeted for handheld devices. It was not designed

13

for devices such as printers, projectors, PCs and therefore can not be described
as a device independent language. HTML was argued in the HDML proposal as
being unsuitable mainly due to its hypertext or browsing navigation model. HDML
instead proposed a transaction based navigation rather than the document-based
paradigm of HTML. This is the fundamental difference between WML and HTML
and it leads to several consequences that the content author needs to worry about.
A content author now needs to generate another separate mobile version of their
Web document and think about how a user will transact with their content in small
use cases to fit the new navigation model. This forces authors to undertake the
expensive costs of device dependent engineering.

HDML advocates argued that desktop browsers provide more context than mobiles
could. Desktop context such as title bars, URL displays and history menus, to help
users keep track of where they are. Title bars, URL displays and history functions are
also implementable in WML micro browser user agents. Another argument was the
assumption that machine distillation of data will lose data deemed as important by
the author. Machine distillation or text summarisation at the time seemed inevitable
if one wanted to use a mobile to access Web information. HDML forced authors to
rethink the structure of their information in order to make it brief and accessible
on a handheld device. However, in practise HDML did also suffer from verbose text
problems of the Web. Despite the criticism for HDML, it did succeed to become the
basis of WML.

WML inherits the deck of cards metaphor from HDML, however WML is not back-
wards compatible with HDML. The basic component of a deck is an atomic card,
it can not be broken down to smaller parts without losing context. Cards amount
to a deck, that in turn makes up an application. Cards become discrete units of
data, you have types of cards for example for entering data and cards for an index
listing. The reasoning is that multiple types of data on a single card would result
in a loss of context. This segregation of data is said to motivate a navigation model
that is multistep goal orientated (transaction) based, as opposed to the browsing
navigational model of the Web. When the WAP compatible user agent on a mobile
accesses a WML deck, it reads the whole deck and navigation between the cards in
this deck is done without the need to load any more data. This should have made a
deck application’s cards quick to navigate between, although this was let down by
often slow and unresponsive interfaces of mobile user agents in practise.

A significant problem was that the size limits of the card and the deck varied from
mobile to mobile. With no concrete limits a WML application will work unpre-
dictably and requiring authors to fine tune their application between devices. A
closer look at the WML specification reveals that it was designed for Man Machine
Interface (MMI) Independence [WAP98b]. Stress was put on user agents to decide
how best to present a card. A card is allowed to be broken up across several units
of displays. However a card is already a broken down element of a deck and now
allowing further fragmentation arguably defeats an authors efforts of break down
the information from a document into atomic cards. There is a underlying problem
in the model and that is the size of the card cannot be declared otherwise you limit

14

how the model scales. If screens are large then a large card size is desirable. However
if using a display of the size of a wristwatch, an author would want the cards to be
the size of a sentence. Hence the card and deck metaphor is device dependent and
does not scale for the mobiles it was designed for.

Another consequence for meeting MMI independence was an abstract specification
for layout and presentation, in order to let vendors choose how to implement the
user interface. The reasoning was that user instead of using numeric inputs, could
perhaps use a voice based interface. However voice based interface in practise has
not been widely implemented. Authors had to now optimise their WAP services for
different mobile phones, as they would never know exactly how a WAP mobile would
render on different mobiles. This abstract specification resulted in implementations
leaving out important navigational conventions such as the back button from mobile
interfaces which harmed usability.

International support was touted by the WAP Forum, as enabling the presentation
of most languages and dialects. In practise mobile phones for different markets
(Europe, Asia, Americas) had different limited font sets built in. This meant that
even though European WAP implementations may have understood Unicoded Chi-
nese characters, they were unable to render them on the screen of mobiles. As a
workaround authors could attempt to substitute image bitmaps representing the
unavailable glyphs. However many mobile user agents could not make image glyphs
hyperlinks to click on like text as they missed support for images anchors. Early
mobile internationalisation which is required for universal access was poorly imple-
mented.

Popular desktop browser user agents such as Internet Explorer [The04] have no
native support for WML, therefore developing or viewing WML content from the
Internet typically involved a cumbersome and inaccessible Java applet. WML was
also difficult to access on a mobile device, as WML had to be strictly well formed
XML otherwise the device could not process it. By comparison desktop browsers
would show invalid HTML without complaint, because of error recovery routines of
the “tag soup” parser. WML browsers did not have a “tag soup” parser to handle
invalid markup, hence a reason why error recovery on micro-browsers are described
as ungraceful. For authors programmatic errors in their content was inevitable while
transferring information from the original HTML format to WML. Hence WML
users would often be denied access to information. As a result, budgets for WML
testing efforts by many Web design firms had to increase to accommodate this. A
significant debugging problem with mobiles is that it is very difficult for a user to
message the responsible party in case an error occurred. Many WML browsers were
unable to show the address of where the user was, or the contact details of the
Webmaster. If the mobile user knew the Webmaster’s email address, the user was
unable to email and report the problem from the existing WAP implementations.
On a desktop reporting a problem was possible as browser implementations were
commonly integrated with an email messaging client. Not being able to recover and
debug errors as well as the desktop domain does not improve WAP content.

15

Figure 3 shows a mobile is required to go through a gateway mechanism via a dial-
in server or Remote Access Service (RAS) to access WML content from the origin
server via the Internet. The gateway assembles packets and encodes ordinary text
WML into tokenized and compressed WML (WMLC) for wireless transmission. This
compiled compressed binary data accepted by the mobile client minimises the size
of the data, as well as minimises the computational energy required by the client to
process the data. Binary XML compression is a good choice for small files and low
powered devices. However later developments have undermined the compiled XML
binary strategy, with wide deployment and satisfactory general purpose compression
with gzip [Lew03]. However poor gzip performance with small data and the local
processing overhead may have been seen as too high for the environment at this
time. The WAP gateway talks to the mobile using the WAP protocol stack and
translates the requests it receives to normal HTTP. This assists content producers
as they can use their existing HTTP Web servers, without having to implement
and deploy the WAP protocols themselves. Besides optimising content for wireless
transmission, the gateway acts as proxy to cache content and firewall to help protect
the mobile network from intrusion. Some gateways were configured to deny access
to WML pages with invalid markup, degrading the user experience by silently failing
not allowing the browser or User Agent access to information. Every WAP mobile
requires a gateway to access the Internet, however it is a common misconception
that the gateway and other applications are controlled by the mobile operator. For
example banks and other financial institutions had to put the WAP proxy within
company premises due to a security vulnerability that prevented end-to-end security
[Paa01]. The added third party of a WAP gateway demonstrates the complexities
of putting middleware between the client and server.

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC

"-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.
org/DTD/wml_1.1.xml">

<wml> <card id="card1"
title="Hello World!">

<p>Hello World!</p>
</card></wml>

010101
001010
100101
010101
010101
01010

Gateway

Encoded requestRequest

Response
(uncompressed WML)

Encoded response
(compressed WML)

Mobile

Origin
Server

RAS

Content

Figure 3: Gateway binary compressing WML

Network operators would often employ a walled garden model, whereby their mobile
customers could only access WML content they sanctioned. This blocked users
from accessing a service which was not part of their provider’s garden. Another

16

usability problem required users to manually enter gateway settings or possibly
change network providers all together if they wanted to switch gateways.

Mobile browser user agents, gateways and the standard WML itself all suffered
from various implementation problems due to pressures to market these parts of
an information services quickly. Browser’s usability was neglected, gateways had
security and scaling problems and the standard WML was quickly incremented to
1.2 and then revised to 1.2.1 to correct initial bugs. As a markup language WML
was a novel approach to promote transaction based navigation, however it did suffer
from the same accessibility problems such as verbose text as did its document based
HTML competitor.

When evaluating WML it is difficult not to get entangled in the complex economic,
technical and political issues of the wireless landscape. That shows that WML
was so constrained, that arguably more important elements of this special markup
language such as a study into how well its card and deck semantics or its binary
XML features worked, were never reached. This indicates WML never matured into
a competent markup language for information. WML as a specification of the WAP
protocol stack did play its own part in its demise, as it isolated itself from the Web,
content authors, desktop devices and users expectations.

2.3 SMS

The Short Message Service (SMS) application of mobiles deserves to be mentioned,
as it proves that the mobile can be used as a platform for a text driven information
application. SMS popularity can be attributed to several factors, including:

• Part of the initial GSM standard

• Simple interface

• Size limit of 160 “western” characters

• Pricing model

The GSM standard is digital and included a provision for relaying short data packets.
The application for the transmission of small texts through the GSM standard is
SMS. Practically every GSM compatible mobile phone is able to send and receive
SMS text messages, therefore SMS had a distinct advantage over WAP in terms of
deployment.

The simple effective interface in the bounds of the mobile, allowed a user to read
and write messages easily and quickly. The SMS application is very well integrated
with the device, as the interface provided direct keys to read and write the messages.
Other usability enhancements included predictive text input, to speed up text input
on a numeric keypad. SMS is hence a usable accessible mobile information applica-
tion. The fixed size of 160 characters ensured messages were short and hence fast

17

to read. The solid limit forced users to carefully compose their text messages in a
efficient manner. The success of SMS affirms compactly written text as an essential
property in high information transfer.

The SMS pricing model unlike WAP is a fixed charge per message sent. This charge
was not time dependent and clear, whilst a pay per-use WAP subscription was typ-
ically based on time, which was difficult to determine by a user. If SMS used WAP,
you would be charged for time it takes to pick up your messages, as well as the time
it takes you to write and send them. This detracts accessibility, as some people
take longer to type out messages than others [CCVW04]. Since SMS was unlike the
Internet’s email where it costs almost the same to send 1000 messages as it does to
send one message, the service has been fortunately largely free of spam. However
mobile operators have used SMS ability to push messages to the user’s SMS applica-
tion in order to advertise services, especially while a user is roaming under a foreign
operator. The push application are considered important commercial applications
for broadcasting users content. Pushed content could be messages, applications or
services such as weather forecasts, news or stock alerts and reminders. As nei-
ther CHTML or early common WAP implementations have native push application
support, specially formed SMS messages have been used to deliver profitable push
services such as ringtones and logos. As mobiles can be carried with users wherever
they go, the mobile is a profound direct target for marketeers and hence the scope
for abuse is significant. If and how push messaging is implemented on mobiles in
the future will be an important issue for the mobile as an information appliance
and how it will distinguish itself from the W3C’s Web where there are no plans to
standardise such a mechanism.

SMS has not succeeded everywhere as in the USA market the size limit of 160
characters is not a standard. Pricing is not as simple, as users can get charged for
receiving a text message. Additionally SMS transport is highly unreliable between
competing providers. For these reasons SMS has not succeeded in the USA market,
as it has done in the European markets.

SMS is so successful in some European markets that it is now the dominant appli-
cation on users’ mobiles. Although SMS is primarily a communicative application
rather than an informative one, SMS can be implemented within the Web frame-
work. Hugely popular Web services such as Microsoft’s Hotmail offer email within
the Web architecture. And similarly Docomo’s I-mode and other Japanese services
use email instead of SMS. Email will arguably replace SMS application in the future.
However in the short term size limits could be a problem and the added overhead
of the subject field. Incidentally the SMS size limit of 140 octets which translates
to 160 7-bit characters will not survive the variable-length encodings of the inter-
national character set of Unicode. It will be a key milestone when SMS loses its
profound dominant position on the mobiles platform to email. As email has been
encapsulated by Webmail on desktops, SMS should also follow the trend by also
converging to a messaging application within the Web architecture. Another key
milestone for the Web applications that run on a mobile UA is when it competes
with the native SMS application.

18

In conclusion SMS demonstrates that the mobile’s physical dimensions are not pre-
venting it from becoming an information appliance [Nie00]. This simple pervasive
standard with an easy to understand pricing model by operators, integrated and
polished SMS user agent by vendors are key factors of a text driven mobile applica-
tion.

2.4 CHTML

The greatest achievement of ”i-mode” service is its content development.
In this context, our choice of adopting an HTML subset as the Markup
Language, was the key to maximising the variation and quality of con-
tents.

Keiichi Enoki, Member of the Board and Managing Director, Gateway
Business Department, NTT DoCoMo, Inc.

Compact HTML (CHTML) is the markup language used by the popular I-mode
service in Japan by the NTT Docomo mobile telecommunications company. I-mode
is not part of the WAP architecture and the implementation details are not avail-
able, except for a document submitted to the W3C detailing their compact markup
language. The design goals of CHTML were [Kam98]:

• Completely based on (then) current HTML W3C recommendations

• Create a lightweight specification

• Can be viewed by a black and white display

• Can be easily operated by users

As a subset of the HTML markup language, CHTML content developers had a
vast amount of existing HTML resources readily available in 1998 to draw upon.
The specification was easy to understand, as it is almost half the size of WML’s
as it did not have the notorious deck of cards metaphor. Docomo’s CHTML based
service reduced the time to market as developers did not have to learn a new markup
language.

Meeting CHTML’s light specification goals entailed dropping elements that are now
conveniently considered accessibility issues [CVJ01]. Most forms of embedded styling
such as frames, image maps and tables. Therefore by correctly cutting down on the
then heavy HTML specification, designers not only made it easier for the mobile
device to render pages, but also made the pages more accessible for the end user.
Practical implementations and experiments showed that Compact HTML was useful
for small screen of 5-10 text lines and 10-20 characters wide. The specification
included recommended limits on input buffer sizes that helped relieve authors from
worrying about individual implementations of mobiles.

19

Notice that the Japanese language has far more complex language representations
than European languages. That makes it technically more difficult to input charac-
ters on the mobile. The mobile platform in Japan has overcome these challenges to
become a viable information appliance.

A compatibility benefit of CHTML, is that CHTML can be rendered by a typical
desktop browser, making it easier to develop for and allows end users to swap onto
a desktop machine and retrieve the same information. In practise desktop users
could not view CHTML I-mode content as I-mode operated a wall garden model
where it was free for content authors to add their content to I-mode’s servers, with
users requiring a subscription. Theoretically CHTML offered the possibility for
multimodal access between the mobile and desktop. If you are reading a CHTML
document on the desktop, but then you need to leave, you could finish reading the
same document at the same address on the mobile device and vice versa. With WAP
you would need two different versions of the document which bears a switching cost
for information to transfer between and for users to navigate upon. CHTML as a
subset of Web standards achieved device independent accessibility of information
between devices.

Attributing the success of the hugely popular I-mode Internet information service
to CHTML alone would be incorrect. The I-mode service charged per byte of a
9600bps packet switched data link and incorporated a convenient aggregation of
small transactions of content providers’ services into one monthly bill. These are
two important factors they were missing from WAP services available at the same
time that influenced user adoption of the service.

I-mode’s service shows that an implementation of an accessible subset of the Internet
standard HTML was a successful strategy. WAP’s strategy against HTML’s nav-
igation model was defeated, as I-mode’s success is now emulated by current WAP
Forum standards which explained explained in detail in the section 3 about current
trends.

2.5 W3C’s Web

The Web boomed in about 1996 which derailed the Web from its W3C standards
tracks. The standards of this time if implemented were plagued by proprietary
vendor extensions. These presentational extensions and enhancements introduced
by browser and plugin developers were aimed to meet the demands of content authors
and to compete for a share of the new Web marketplace. As a result the W3C in
an effort to reach consensus with implementations by the market leaders, Netscape
and Microsoft, recommended HTML 3.2.

HTML 3.2 as a standard inadvertently introduced a trend in Web design that is still
prevalent today, with poor use of presentational markup. The FONT and TABLE
tags in particular allowed graphic designers to create visually appealing Web sites.
Web pages were now based on presentational instead of structural principles for
marking up information. For example many content authors used an elaborate

20

physical font face with a certain size instead of logically using the first heading
tag H1 for the title of the page. Now a machine is unable to determine if the text
marked up in a FONT tag is of any semantic importance. The table tag for tabulated
information was abused by authors to accomplish complex nested layouts such as
multi-columned magazine pages. Tables are computationally expensive to render
and they broke text flow by having to grow and shrink the table if the text size
changed. Using font and table tags made browsers unable to properly resize text
or the text flow when scaling, which is needed when displaying content on a small
screen. Hence the then 3.2 markup standard of HTML featured elements that were
difficult for mobiles to access.

The W3C standardised the frame element in HTML4 in 1998 that reduced scalability
and broke Web navigation down from a single to a sequence of navigation actions
[Nie96]. Frames were used to keep users locked within an application, making it
difficult for them to leave. Bookmarking a page within a frameset often would
not work as a user expects. Besides the usability problems, it made Web design
more complex and comparable to WAP’s WML card and deck metaphor. It was
complicated for browsers to render as each frame within a frameset was a separate
rendered page. HTML frames were unfortunately widely used as a means to help user
navigation. This shows HTML lacked satisfactory means of overview navigation.
This prompted WAP Forum’s decision to adopt HDML for solving these navigation
related problems. The W3C’s bloated 3.2 specification made it a poor candidate
for WAP’s markup language. Future W3C specifications need to shed problematic
elements, in order to be light weight enough to be implementable on a mobile.

Bitmap graphics were introduced to the Web in November 1993 with the Mosaic
browser. Graphics are now used extensively in Web sites for not only showing pic-
tures, but also abused commonly for controlling visual layout with contentless blank
and spacer images. It is good Web practise to put alternative text to describe the
images shown, except this practise is not widespread. Identifying presentational im-
ages from the semantics of the informational content they stylise is a problem. The
main problem with all bitmap images is that they do not scale. A technology that
fails to scale is very difficult to display on high resolution screens, as well as it is the
low resolution screens characteristic to that of a mobile. There are workarounds to
increasing image accessibility, but it demands computationally expensive techniques.
Techniques such as image resizing, converting colours and cropping to an interesting
feature have high processing and memory requirements. These techniques unfortu-
nately still often lead to unsatisfactory results on the mobile with degraded images
and slow rendering. The bitmap graphic formats of the Web GIF, JPEG and PNG
all present problems for mobiles to access.

Besides W3C standards other proprietary Web technologies have established them-
selves on the Web, such as Adobe’s Portable Document Format (PDF), Macrome-
dia’s Flash and Real’s Realplayer. Many authors make extensive use of these client
side technologies that made sites difficult to access from other platforms that do not
have these proprietary clients for these formats. These clients exploited the abun-
dant resources of the desktop and hence inappropriate for a limited mobile of this

21

era. Other organisations require animation and interactivity and are unwilling to
wait for W3C technologies to catch up with what is already commercially available.
Multimedia like bitmap images all pose serious accessibility issues to the mobile,
especially multimedia often needs further output devices such as a sound device or
3D graphics. The sound device on most mobiles is not easily audible from a hand-
held position. Wide use of non-standards in Web content is extremely challenging
as standards need to not only catch up with them, but also replace them. The W3C
needs time to create them and authors need time to migrate to them, hence leaving
mobiles inaccessible to disruptive, but exciting Web technologies.

The W3C sanctioned Standard Generalised Markup Language (SGML) based HTML
of this era allowed malformed markup and as a result the Web is malformed too.
SGML’s grammar allowed malformed markup that would be incorrect in XML such
as a missing end tag. SGML’s flexibility was balanced with a large specification and
rare implementations of it. SGML parsers were often incomplete and as a result
browsers employed even more liberal, unpredictable and nonstandard “tag soup”
parsers. At this time in order to stay compatible with leading browsers, competing
browsers had to emulate the unpredictable way that the most popular browser would
deal with poor markup. Therefore writing a browser for the limited first generation
mobile and maintaining user expectations by emulating quirky behaviour of browsers
of the desktop was very difficult. “Tag soup” is tolerant to authors’ mistakes, but
hard on the computer. At the time the mobile utilised the XML markup language
that is harder on people, but easier on the computer. However a new markup lan-
guage for the Web will not fix all the user errors of SGML’s legacy on the Web.
Browser parsers must be liberal as users expect pages to render. Denying access to
a badly formed HTML is a strategy that would not work, as you would deny most
of the Web from the user.

HTML aside, the way the Web worked was simple and fault tolerant at the same time
due to its architecture represented in figure 4. Normal access did not require a proxy
or gateway, therefore Web sites often could utilise simple IP based authentication to
control access to information. Nor did it require the overhead, the likely bottleneck
and possibly restrictive WAP gateway reprocessing the application layer content.

In order to combat presentational devices polluting content, the W3C recommended
Cascading Style Sheets (CSS) [LB96]. Although recommended in 1996, it was not
implemented before HTML 3.2 made its impact. As other widespread Web tech-
nologies were able to do impressive visuals, in comparison CSS when implemented
years later in roughly the year 2000, it could only control fonts and borders in a style
sheet. This is what the widely adopted font and table elements already HTML 3.2
did by this time and CSS implementations were often incomplete or incompatible in
leading browsers making it difficult for authors to later switch over to. Through the
style sheet, content and presentation could be separated which would greatly aid
mobiles ability to access Web content. If the demands of the style were too high,
the mobile could theoretically not use it and use the vanilla but accessible version.
A style sheet could be associated with any number of pages, therefore bandwidth
savings were made that would have greatly benefited the mobile. Considering when

22

Client Server

HTML
UA/

Browser

Request(URL)

Response(Content)

Figure 4: WWW architecture

it became a recommendation, it was unfortunate it was neither implemented in
desktop or mobile devices until years later. Although rendering stylised text on a
small mobile screen is still a problem, CSS presents an option not to have any com-
plicated style in order to let the browser decide how to best display the character
based content for the device. Separating content and style is crucial for accessibility
required by that of mobiles and future use of such practises will indicate the Web’s
appropriateness as an universal information space.

The Web is an emerging media that still needs to reach its full potential. The radical
growth it experienced in the past few years has created several accessibility problems.
The popularity of troublesome presentational elements embedded in HTML is being
separated with CSS, however non-text multimedia and common proprietary Web
technologies have to be also addressed by the W3C. There is also the larger problem
of the legacy of bad markup of the Web, it too should be accessible to mobiles.
Despite the faltering steps of this immature medium, the Web has made an impact
on our society and is here to stay as the Internet’s dominant information space for
the near future.

3 Second generation of the mobile Web

The IT bubble has burst, Web innovation has slowed and mobile devices have ad-
vanced. Knowing the background leading up to today, we can now evaluate how
strategies, methodologies and technologies have improved to address the problems

23

both the mobile and desktop platforms raised that prevented a shared and accessible
information space.

A close look of how the W3C and the WAP Forum, now known as the Open Mobile
Alliance, are converging their standardisation efforts and learning from their previous
mistakes. The W3C mandated migration from SGML to XML and its family of Web
technologies warrants a special focus. As the Web medium is an established part of
computer science, there is now an opportunity to introduce research to cast another
viewpoint to the problem of improving accessibility of information on the Web.

3.1 Environment

The World Wide Consortium Device Independence Group has specified a frame-
work called Composite Capability/Preference Profiles [KRW+04] to help describe
User Agents (UA) for content adaption. In the past year this has resulted in the
availability of quantitative data in the form of UA profiles from mobile manufac-
turers with device software and hardware characteristics. Unfortunately temporal
elements such as the time the device was issued are not included in the schema.
One could use the announcement date of the product by trawling manufacturer’s
websites, but that value is subjective. The device may never have been shipped
according to that date and it might have had a very limited production run and
market influence. Besides UA profiles are a relatively new W3C recommendation,
hence the profiles are only approximately one year old and therefore too short a time
for identifying mobile hardware trends.

Different manufacturers tend to use different schemas or vocabulary to describe their
devices. If they do use the same schema, some might tell about how many characters
can be rendered on the screen, whilst others tell only about the screen size in pixels.
In addition the screen size stipulated in the schema is no indicator of the addressable
maximum screen resolution of the browser user agent of the device. Therefore in
practical implementations the screen size offered by the manufacturer’s device profile
has little value.

Quantitative analysis of the device matrix offered by market leaders such as Nokia
has further problems due to market fragmentation. The Nokia range of mobile de-
vices unnecessarily differentiate integral hardware and software features from one an-
other. Hence it is difficult to identify hardware trends of in-built cameras, Bluetooth
or Enhanced Data Rates for GSM Evolution (EDGE) functionality. Mobile models
for example can differ between those in the Americas compared to Europe. Mobiles
can differ on demographic grounds, for people who seek high fashion where devices
are elegant, for business users, or sports enthusiasts who want a more robust model.
Individual mobile life cycles differ as older Nokia communicators with screen sizes
of 640x200 are still supported, which reflects poorly on the overall trend of screen
sizes. Some models may be in abundance compared to others, however obtaining
sales volume figures and determining their worldwide impact is again difficult. For
these reasons statistical quantitative analysis of mobile hardware characteristics to

24

identify trends can not be seriously conducted. Therefore we will have to continue
with qualitative observations of the current mobile environment relevant to that of
accessing the Web.

Mobile software can be still considered as not being upgradable. There is little
incentive for mobile vendors to port drivers dependent on a specific mobile model to
newer versions of a mobile operating system. Demanding user agents are dependent
on operating system enhancements to implement more functionality. Porting drivers
of closed specified hardware to the new operating system is an expensive in house
operation, although it can greatly improve older mobiles functionality and lifetime
of a mobile. There is little return on this investment for the mobile vendor, as
the user periodically replacing the entire physical mobile for an upgrade is typically
part of the vendor’s business model. Hence mobile software still doesn’t give users a
software upgrade path comparable to that of the desktop computing environment.

Mobile platform software is typically particular to each mobile manufacturer. In
Nokia’s range, there is a development platform grouping between the series 40 and
60 software platform. Both platforms allow software applications to be installed in
a Java environment. This environment although an improvement over the earlier
generation of mobiles is not enough for a full featured user agent. Series 60 is
the high end “smartphone” platform that provides an environment where 3rd party
user agents such as the Opera browser [Ope04a] can now be installed and operated.
The more common series 40 however only ships with Nokia’s in house browser.
Evaluating this user agent is difficult because the User Agent profile does not indicate
versions of the browser. The user agent string of the browser shows the model of
the phone, followed by the version of the development platform. Next in brackets
is the version of the operating system. This version is the best indicator of the
version of the user agent, as there is no link between the development platform and
the user agent version. Changes in the version do not necessarily mean a change
in the browser user agent however, as some other part of the system unrelated to
browsing may have changed. Neither the user agent string or profile provide Web
engineers a concrete indicator to the mobile’s user agent. As the Web user agent is
the most important part of the mobile platform, it is vital to correctly identify the
user agent in order to track it Web standards compliance. Web developers otherwise
face a difficult task of working around inevitable user agent software bugs, without
knowing which user agent they affect.

Nokia3100/1.0 (04.01) Profile/MIDP-1.0 Configuration/CLDC-1.0

From October 2004 Nokia has corrected this UA string to a Web compliant User
Agent header [Nok04].

The user agent string also indicates Java class functionality of the phone, however
it is not directly relevant to the browser. Java classes are helpful for identifying the
broad capabilities of the mobile with less complexity than user agent profiles. The
classes are defined [GSM03] to propose that screen characteristics must be at least

25

120x120, minimum memory amounts of 256KB and the colour depth must be at
least 8 bit.

Many mobile phones today implement at least 4096 (12 bit) colour screen displays.
Colours can improve accessibility of information by helping people recognise fields
that need attention [CCVW04]. However they can also detract accessibility if the
colours are chosen poorly, for example when two colours do not have enough contrast.
For people who suffer from colour blindness, certain colours might be indiscernible
and any information which is dependent on colour will be less accessible. There-
fore marked up information should be independent of colour and there should be
an option provided by the user agent to turn off the colour styling. Another pos-
sible negative affect of colour screens is that they seem sluggish and unresponsive
compared to older black and white screens which detracts the usability of the device.

Fonts and internationalisation problems have improved. Better storage capabilities
on mobiles have resulted in more Unicode glyphs, therefore on today’s mobile you
can read Russian Web pages in Cyrillic. However mobile interfaces are still often
limited to the languages available on the phone in the country it was purchased in.
Therefore now you can probably read Web pages written in exotic languages such
as Sanskrit or Arabic on a modern mobile, but the user agent has no functionality
to allow the user to write it. There are typically three different text sizes, small,
medium and large available on mobiles. This allows a little more logical structure
with headers, however this is arguably of little use as a deeply hierarchical document
on a mobile screen is not a typical use case. Small text sizes do allow a lot more
information to be crammed into a small screen size. In the scenario of using the
mobile whilst walking, text may be too small to read. Therefore since different text
sizes have been introduced, the mobile should allow the user to resize the text to a
larger one. This feature of either zooming or scaling the text is often unimplemented
by mobile user agents, possibly causing further accessibility problems for the aged
for example. Web developers should also be aware that if they logically markup
information with text size alone, then it will lost meaning when a user wants the
font size as large as possible. The distinguishing element of text formatting lies with
emphasising the text by bolding (weighting) or italics. Unfortunately different
levels of weighting and italics are often poorly implemented and hence colours with
their aforementioned issues are commonly used instead.

Besides the input issues for internationalisation, input design and functionality forms
a considerable contrast to the desktop’s full size keyboard and mouse. There are
no rigid standards for inputs, however there are industry core recommendations for
a dedicated select/accept and back/erase key. This does not translate predictably
to Web navigation paradigms of following a link and returning from one, as for
example the back key terminates a network connection and returns the mobile to
an idle state on Nokia phones. Enhanced user interfaces are recommended by the
industry to have two softkeys which change their meaning upon different contexts.
These keys are commonly used for assisting navigation via a menu. There are several
other physical input considerations such as the size of the keys and if and how a
joystick (4-way control) or scroller(2-way control) is implemented. Unfortunately

26

keypad design is not settling as it has become a way of differentiating a mobile
product from a competitors’.

However as browsers are chosen, deployed and tested by the mobile vendors them-
selves, it is their responsibility to ensure the user agent is usable with the physical
interface they designed. The software drivers for the inputs are important, as well as
text input software providing predictive and adaptive capabilities. These software
enhancements can make text input faster and easier than without them and this
functionality is used to great advantage in the SMS application. Incidentally predic-
tive writing from a browser input field is a core requirement of the GSM Association
[GSM03]. Another trend in inputs is that mobiles can be connected to external in-
puts such as a full size keyboard or a mouse with Bluetooth. Future improvised and
wearable inputs could drastically change the notion of the typical mobile device.
Today the mobile’s inputs defines itself in the range of small computing devices,
however this is set to change. Although limited and often inconsistent the inputs
alone should not obstruct Web developers attempts to bring the Web to the mobile.
Inputs are in the domain of the user agent and device manufacturer to cooperate on
and not the Web developer.

Wireless network connectivity is still expensive and error prone. There may be be
more bandwidth now, but it can easily fluctuate to previous low levels. Today the
major leap forward for the mobile as information appliance is the GSM supplement
General Packet Radio Service (GPRS). It solves two problems that plagued the
earlier incarnations of the WAP information appliance. The mobile does not need to
dial-in over a circuit switched network, as it always connected for a packet switched
network. This results in faster connection times, making the device much more
responsive and usable. Due to limited cell capacity and design, GPRS speed gains
over the previous circuit switched system are not significant. The other problem it
solves is the cost of accessing the Internet from a mobile. Since GPRS is always
connected, operators can offer tariff plans such as charging for the amount of data
transferred or to a simpler flat monthly fee. The user with GPRS now does not
face the stress of per second billing whilst using the phone, or face the expense of
redialling after a lost connection. However per byte billing can be just as stressful
when an UA fails to provide how much bandwidth consumed and converting that
into clear costs for a user. Although out of the scope of this thesis, network provision
and billing play key roles in uniting the Web with the mobile.

The problem addressed in the earlier generation of information enabled mobiles was
the walled garden approach of operators. The walled garden is increasingly referred
to as a vertical market. The walled garden still exists largely because it is difficult
to bill users for services. For application vendors it is easier to sell services to mobile
operators for them to attract customers to services unique to their operation. This
model works in reverse with operators restricting users to particular applications
in order to generate revenue from the application vendors. For example although
a user wants to use the search functionality of X company, the user is redirected
by the mobile operator to Y company. Y company pays the mobile operator for
the generated traffic. Often the application is not even redirected, resulting in a

27

frustrating 404 error for customers. Therefore though mobile users have a HTML
browser, there is no guarantee that they will be able to access the same sites as a
desktop Web user. Operators still threaten to fragment information space, without
the help of specifications.

The problem that plagued earlier generation of information enabled mobiles was the
failure to stipulate a maximum file size has not gone away. Content developers still
need to check the browser characteristics with difficulty from each mobile device to
determine the maximum size of the content. With dynamically generated HTML,
CSS, bitmap images and compression it is a difficult problem to accurately determine
the total payload size. If the size is exceeded it is also difficult to form a policy of
adjusting the content appropriately. At this stage mobile manufacturer user agents
should have created an environment whereby authors can create and do not have to
worry about these frustrating variable limits.

Error recovery and feedback on mobiles is still awful. There is no specification
defining the user agent behaviour regarding display priority [GSM03]. On the Nokia
3100 mobile device a user’s error notification is a simple notification message which
is flashed for a couple of seconds. Unfortunately the actual message is often unhelp-
ful for debugging. Errors whilst rendering a page in a browser often still silently fail
or worse fail to show perhaps an important component of the document. This prob-
lem also affects desktop browsers that are not standards compliant. An important
aspect of error handling is providing feedback to the responsible party. For example
browsing with the Nokia series 40 XHTML browser on a secure HTTP site gives
a “No gateway reply” error message. The user doesn’t know if they should contact
the mobile vendor, their network operator or the content author about resolving the
problem. Once again, if they knew who was responsible there is no standard mech-
anism to message or call in the problem report from a mobile UA. This lack of core
interactivity and responsibility on the mobile platform misrepresents the large user
base behind mobiles and it must be addressed to ensure the mobile as an interactive
information appliance.

Plotting CPU power and memory capacity trends of mobiles today is difficult as
their specifications are not well publicised and difficult to compare. They have
improved roughly in accordance with Moore’s law, hence both CPU and memory are
becoming non-issues. Moore’s law does not apply to radio wireless or battery power
which is still the weak link, especially as CPU intensive applications drain more
battery power. Software power management has become more efficient whilst the
Lithium cell technology powering today’s generation of second generation mobiles
has not significantly changed from the earlier generation. The GSM association
interestingly mandates a one day minimum lifetime from device manufacturers with
three days strongly recommended [GSM03].

The desktop environment on the other side of the spectrum has also evolved. Power
supply demands of desktop incidentally increased in the past years. High powered
high frequency CPUs also need better cooling in the form of high powered fans, hence
desktop machines of late have been known as noisy power consumers. There are now

28

even larger screens, more memory and increased CPU speeds. User agent software
with desktops is dominated by Microsoft’s Internet Explorer browser [The04]. Web
compliance updates to this browser are completely dependent on the Microsoft cor-
poration. The consequences of Internet Explorer’s impact on the Web are dealt with
in section 3.3.

Comparing the environment of the information appliance in earlier and current gen-
erations of mobiles shows us that the mobile device is rapidly evolving. Numerous
capabilities have broadly improved such as connectivity, memory size and CPU. This
provides a more capable platform to service the high demands of a Web User Agent
implementation. The increase in computing power has allowed mobiles to replace the
address book and calendar functionality of small computing devices such as PDAs.
Mobiles have also now incorporated cameras, possibly replacing the snapshot cam-
era device. Mobiles can provide a variety of tasks from telling time to changing TV
channels. This small device consolidation indicates a trend towards a more generic
and versatile computing device.

The two persistent elements that are said to hinder a mobile’s progress as a Web
appliance platform is its typical poor keypad input and screen size. Input meth-
ods are already enough to allow text messaging to become the leading application
on a mobile phone. The screen size limitation to an extent is also a fallacy. Re-
cent research shows that a human’s eye span only stretches a few characters wide
[BDDG03]. Therefore if the user agent can scroll text as smoothly as reading a
printed magazine column then this problem could be solved. However in this gen-
eration screens are typically slow scrolling and a far lower DPI than printed media
and therefore a hindrance.

For Web user agent developers the mobile platform needs to become more generic,
more powerful and easier to deploy updates. For Web engineers, it is the user agent
compliance to standards that matter. For Web users its the cost of connectivity and
the experience of the user agent. The software user agent is the key element in this
environment.

3.2 OMA

As early as 1998 the WAP Forum approached the W3 Consortium [HMK98] to
cooperate in addressing the problem area of mobile access of Web content. In 2001
a proposal for WAP2.0 by the WAP Forum was announced which confirms WAP
Forum’s change of direction in adopting W3C standards of markup and discontinuing
WML 1.x.

Shortly after releasing the white paper on WAP2.0, the WAP Forum was con-
solidated into the Open Mobile Alliance (OMA). WAP Forum was joined by the
SyncML initiative, Location Interoperability Forum (LIF), MMS Interoperability
Group (MMS-IOP), Wireless Village, Mobile Gaming Interoperability Forum (MGIF),
and Mobile Wireless Internet Forum (MFIW). OMA’s attention has now expanded
to interoperability of calender, contact, instant messaging, multimedia, gaming and

29

locational information. The OMA has set upon itself setting up several new inter-
faces of information, although notice that the Web architecture could be applied to
all these application areas mentioned.

The WAP Forum or OMA decided to replace WML with W3C’s Extensible Hy-
perText Markup Language(XHTML) which is the reformulation of HTML4 as an
application of XML. XHTML is modularised into a collection of abstract modules
that provide specific types of functionality [ABD+01]. Modularised XHTML ele-
ments can be combined and extended which allows the language to adapt to differ-
ent contexts and contents. Using figure 7 as a guide, we can see how modularised
WML 1.x combined with XHTML Basic to create XHTML Mobile Profile (XHTML
MP). Unfortunately parts of WML1.x could not be expressed in an XHTML module.
A markup language called WML2.0 which features XHTML MP and modularised
WML extensions via a XML namespace was drafted to ensure backwards compati-
bility as seen in figure 5. For pragmatic mobile content developers it was important
to have WML functionality in order to assist navigation and ensure usability. In
practise the WML namespace became optional, after WAP Forum decided that the
WML extensions were just for backwards compatibility and were not going to be
extended. There are two separate markup languages in WML2.0, XHTML MP and
WML 1.x. as seen in figure 6.

The Nokia user agent implemented WML2.0 so that they seamlessly supported
XHTML and WML by switching modes when it encountered the content type iden-
tified markup. Therefore there was no option to embed WML in XHTML which
might have avoided the problem of mobile specific markup in HTML, which could
have made WML2.0 unavailable by desktop browsers. Nokia has isolated WML and
began implementing a Web user agent for their mobiles.

XHTML MP

XHTML Basic
WML2.0

Figure 5: XHTML Browser with XML namespace

Moving from WML 1.x to XHTML MP is more painful than just an XSLT trans-
form on the XML [Ope01]. For developers it meant losing the functionality of their
expensively engineered deck application consisting of individual task cards. Leav-
ing transaction based navigation put stress on the mobile browser to ensure good
browsing navigation. XHTML MP user agent implementations did not compensate
WML for the deck loss. For example the user agent should show the URL of the
Web page. Without this basic navigation aid it is difficult to know where you are
in the Web. The new user agents could have paginated long XHTML documents

30

XHTML MP

XHTML Basic
WML 1.x

Figure 6: XHTML Browser with separate WML browser

to make to more usable like a deck, but failed to. This means that the server often
has to paginate the page and therefore each page is a long request reply round trip.
Using XHTML instead of WML would mean a loss of usability that assisted earlier
in navigation and caching of pages.

XHTML MP does frustratingly mix and match W3C specifications, by introduc-
ing some elements from XHTML 1.1. Despite XHTML MP’s confusing design and
not being a W3C endorsed Web standard, by and large XHTML MP can be ac-
cessed by a typical desktop Web browser. This is accomplished by the author who
simply adjusts the MIME type of the served document from the mobile specific
application/vnd.wap.xhtml+xml to the universal text/html type. This marks a
convergence milestone between the the mobile and the Web. Unfortunately as dual
browsers silently process XHTML and WML as if they were no different, users do
not know they are using the Web API’s HTML interface as there is no indication by
the user agent. A user does not know they have the profound possibility to access
the same information from a desktop PC. Convergence has also been marred by
poor marketing as many users still think they are using WAP, which they have now
accepted as not being the Web. Authors face a similar dilemma as it not publicised
that a mobile UA handles XHTML MP no differently than the ordinary HTML of
the Web.

Comparing XHTML MP with Docomo’s CHTML from section 2.4 is worthwhile.
OMA has followed a similar strategy and now both parties converge too as seen
in figure 7. This unites Japanese and European mobile information markets, with
a compatible Web markup specification. The difference lies in the user agent’s
implementation quality of the HTML specification. European mobile manufacturers’
software such as Nokia’s user agent has to play catch up to Docomo’s I-mode lead
in user agent technology and experience.

WAP2.0 features wireless profile CSS (WCSS) [WAP01], which is an important
part of Web architecture and engineering to separate style and content [Jac03].
This second generation of mobiles have grown their graphical capability and CSS is
the appropriate Web standard complement to allow authors to style their content.
WCSS is based on a subset of W3C’s CSS2 [LBLJ98], however with additional
elements such as:

Marquee For the infamous scrolling text effect (popular in Chinese markets)

31

Figure 7: Markup History [Lit02]

Input Specifies additional input controls

Accesskey Which is already in XHTML Basic’s Hypertext module

Marquee usage and incidentally the blink effect although implemented by desktop
browsers too are not encouraged largely due to their accessibility issues. These
styles are time dependent and hence someone who reads faster or slower will be
inconvenienced by such an effect. These animations are eye catching and popular in
use for entertainment purposes, hence their inclusion into this specification. Input
controls are sorely missing from HTML specifications. To some degree this void has
been filled with ECMA script, but the mobile equivalent of WMLScript is difficult
to work with, due to substandard conformance and mixed implementations. These
input controls are especially important to reduce the costly server requests and
client replies, hence the implementation in WCSS. For the desktop paradigm of

32

Web access there are mature uniform deployments of ECMA script. Therefore a
desktop user agent would conceivably ignore this WCSS input extension, whilst a
mobile user agent would ignore ECMA script. For now this inconsistency does not
affect viewing of information, but for Web application interaction it does. A Web
application developer now needs to add redundant code to ensure it works on mobiles
and desktops which either increases the payload for mobiles or forces the developer
into device dependent engineering.

The accesskey was proposed as an another optional method to activate an element
with CSS. The WAP CSS extension accesskey allows a key or key combination to be
bound to a particular document element in order to activate that element. WCSS
explicitly names keys such as the mail access key of a mobile that can be rebound
by the user agent’s rendered document. This feature is open to abuse allowing
an application to bind every key and lock the user to the page. Furthermore the
list of supported keys or characters used by accesskey is device dependent, therefore
inappropriate for device independent engineering. Accesskey implementations on the
desktop browser can also conflict with existing shortcuts, however the user agent’s
own bindings takes priority, which is different to what the OMA specified for mobiles.
For mobile users it is not intuitive to have a key such as the answer call button bound
to an element by the author on the Web page. The user agent should be able to
automatically give appropriate shortcuts to interesting elements or components in a
document. This is already accomplished to a degree with softkeys. Giving authors
this ability to override shortcut conventions degrades usability and is best avoided.
For users it is difficult to tell which accesskeys are bound. Both Marquee effects
and the non-Web standard input controls results in mobile specific code, however
user agents can be easily programmed to ignore them. Although OMA enhanced
the specification for the mobile arena, WCSS can be used on any device user agent
complying to the CSS standard [LB96] without any major interoperability issues.

The underlying WAP2.0 stack can inconsistently alternate between WAP1.0’s stack
and WAP2.0’s IP based stack much in the same way as the dual mode browser. It
is not apparent what stack you are using as they can be both implemented. This
might be a concern to setup a direct connection between the user agent and server
for security and integrity reasons of a Web service application. Connection quality
is also dependent on if and how an operator has established a gateway. OMA’s
decision to adopt Internet standards with the legacy of WAP attached it leaves Web
developers with the same difficult problems as before. Since binary compression
may not be used in the IP based stack, one can argue that the problem is now worse
since you can not rely on any of the benefits of WAP delivery optimisations.

Relating back to section 2.3 OMA’s messaging efforts are still separate from both
Web browsing and email. Long or concatenated SMSes have enhanced SMSes as
well as Multimedia Messaging Service (MMS) has come of age. OMA has interest-
ingly mapped the 3G messaging solution MMS into the WAP specification, taking
advantage of browsing technologies UA Profiles and WAP Push to create the ser-
vice. UA profiles are addressed in detail in section 3.3. Conceivably MMS is a Web
application, however operators are keen to make each MMS discrete in order to

33

charge for them. The underlying push technology specifications are still SMS, with
a URL to the multimedia payload. The legacy of SMS based services are easier for
mobile network operators to control and charge for compared to email and hence
email implementations have been ignored.

SMS is a vertical market push technology monopolised by the mobile operators that
might be regulated. There are no clean horizontal interfaces between operators
as they are protective of their own markets and investments. Interestingly push
messages may be regulated under particular country rules due to their associated
privacy concerns and risk of abuse. For example where marketeers are deemed
to inevitably abuse the channel to deliver a targeted message, which is commonly
known as spam.

Push messages are not part of the Web’s request and reply architecture on the
desktop platform. Although email is often used in conjunction with many Web ap-
plications, especially for authentication. Email can be encapsulated inside a Web
application, however with the mobile characteristic of limited screen space for adver-
tisements this could prove problematic for current Web mail business models. Access
to an mail Web application will sidestep the operator’s control of messaging. There-
fore questions like ’Will operators open up messaging?’ or ’Will mobiles implement
email standards?’ are not as important as an Web application that functions on
the mobile UA. The major stumbling block for email and MMS carried within Web
architecture is the quality and usability of the user agent. The MMS application on
mobiles are unfortunately separate to the browser application, although they share
the same underlying technology. Push technology within a Web application on the
mobile platform remains a milestone to reach.

OMA’s focus on Digital Rights Management (DRM) is another effort to ensure
vertical markets which plays no part on the liberal Web. DRM is used to prevent
consumers from sharing content, allowing operators to carefully control and charge
for content. These DRM locks are not part of the Web architecture. The Web has
its own ways of protecting content already. DRM does not threaten the nature of
the Web, however the Web does threaten the use of DRM. Disallowing users to make
use of a freely available ring tones, images or other Web resources from a mobile
UA would be a move that would only frustrate users. When today’s image and ring
tone businesses disappear, it will be another curious milestone for universal access
to information. DRM is largely avoided with the current nature of the Web.

OMA has changed its direction towards W3C Web standards, with WML effectively
discontinued and replaced by their deceptive selection of W3C standards. Device
independence would be better assured if OMA did not mandate a non Web standard
superset of W3C’s XHTML Basic and CSS technologies, but in practise the damage
is minimal. Politics and marketing are a different matter as this important transition
to Web standards has occurred under the unfortunate legacy of WAP. Dual mode
browsers, the dual stack and restrictive operator policies will confuse and frustrate
developers and users. Developers will find it difficult to be develop for substandard
and premature implementations of Web user agents that are currently being shipped

34

in mobile phones. The future is hampered by little or no opportunity to choose
another or upgrade their mobile’s user agent without replacing their entire mobile.
However there exists exploitable shared support of the Web’s basic markup and style
between the mobile and desktop devices.

3.3 W3C

All these technologies are supposed to be device-independent, so if they
aren’t suitable for mobile devices, the problem is with the technology
itself, not with the lack of a profile.

Ian Hickson

In this section we continue analyse and comment on the W3C efforts to standardise
the Web for universal access.

HTML was put in maintenance in 1999 [RHJ99] and since then the W3C has thrown
its weight behind XML and XHTML technologies. Now there is a growing family
of XML specifications by the W3C such as Xforms for forms processing, XSLT for
transformations, Xpath for queries, SVG for vector graphics, SMIL for multimedia,
MathML for mathematic symbols, Xlink for describing components links and many
more.

As described in the previous section, XHTML is simply the reformulation of HTML
4 as an application of XML. The earlier section 2.5 before raised the problems of
SGML and its complementing computing intensive and quirky “tag soup” parsers.
Information marked up in XHTML [BIM+00] makes information much easier to
parse and manipulate for the user agent and hence very attractive for UAs with
limited resources. Thus the UA requires less implementation at the expense of the
author. The author now has to ensure the information is strictly in well formed
XHTML. With XHTML UAs can easily catch well-formedness errors and allow
XHTML to be mixed and matched with the other extensive and extensible XML
related technologies mentioned. For these reasons the OMA chose to base its markup
standard on W3C’s XHTML.

Unfortunately there is a substantial difference between W3C’s endorsement of XML
and the Web’s adoption it. The dominant desktop browser Internet Explorer 6 (IE6)
does not support XHTML. Because XHTML is largely a stricter form of HTML, if
the XHTML page is sent as the content type text/html IE will render it. As it is
impossible to reliably automatically detect XHTML sent as text/html [Hic02], the
UA must assume the content is HTML even though it might be XHTML. Hence the
benefits of using XHTML are lost at the cost of ensuring well formedness. If you
pretend that IE6 does not exist, authors need to change their development practises
and learn new tools which as we have already seen in section 2.2, is costly. XHTML
must be well formed to be advantageous, therefore authors can not simply test their
content with leading UAs as their accustomed to. They have to use a validator.
Most authors will find it difficult to comply to the strict rules governing XHTML

35

1.0 which has the features as the less demanding HTML4. Disadvantages of serving
the XHTML content type include the loss of incremental (progressive) page loads
by the UA and the popular search engines not indexing XHTML. The reality is that
there is a insignificant amount of valid XHTML on the Web today in 2004. XHTML
is not the markup of the Web, HTML still is.

Ignoring the state of the Web and concentrating on building a better and somewhat
Web compatible world with XHTML is an option worth exploring. Most of the
Web is poorly written markup and will not stand a chance of running on a second
generation mobile in any case, one could argue. You could conceivably leverage
the XHTML browser in mobiles and reap all the benefits of a clean lightweight
UA implementation with extensibility. However after testing the Nokia UA in the
popular series 40 line of mobiles to determine whether or not the parser is XML
compliant or not, reveals interesting results. Despite the limited resources of a
mobile, the XHTML browser does not implement a compliant XML parser and treats
malformed content without complaint. Therefore there is absolutely no benefit of
using XHTML in current mobile UA implementations either. Doing so may cause
more harm than good as the author may think their producing valid XHTML, when
they are not. The popular Nokia device and its preinstalled own Web UA follows
the “tag soup” trend with desktop browsers, so one can safely predict that XHTML
will not be the de facto standard in the mobile domain too. In conclusion the mobile
UA is currently supporting HTML, not XHTML.

CSS is the key technology behind achieving separation of style and content [Jac03].
CSS needs to fulfil the high demands of Web designers, at the expense of user agent
control. There is an inverse relationship between developer and user agent about
the fine control of the information display output. The user agent is in the best
position to choose the appropriate font or colour scheme especially on the limited
mobile platform, however the designer may want to override these safer defaults.
Ultimately the user agent should have the last say in rendering the style sheet or
not by presenting the option to the user, as the style sheet may be inappropriate
for the device. CSS offers a mechanism for mobile UAs to work around heavy
embedded styling, ensuring access to content on any device. CSS saves on bandwidth
by allowing a UA to cache the style sheet which is typically applied across a Web
application. CSS allows the possibility of more fluid and scalable designs, that
are more likely to work on a mobile platform with its limited screen. CSS works
with either HTML, XHTML and other markup languages. CSS is vital to ensure
information is device independent and accessible on mobiles.

Despite the importance of CSS, the W3C threatens to undermine CSS’s universal
goals with device dependent profiles. CSS Mobile profile [WDSR02] is a candi-
date recommendation specification marking out elements of the CSS specification
[LBLJ98] that an UA does not need to implement. This additional specification cre-
ates confusion and encourages device or profile dependent UA implementations. The
way CSS mobile profile relates to WAP Forum’s WCSS [WAP01] mobile dependent
CSS subset also threatens to confuse and frustrate. Web developers are needlessly
given the task of mapping the differences between three specifications and judging

36

what or what not to implement. W3C has decided to make a profile to declare the
minimum CSS to what a mobile device should implement, which is arguably out of
their domain. User agent developers should declare what they have implemented
or what they have not of the specification. UA developers, the W3C implementors
are experts in this field and not the W3C. Making profiles segregates UA developers
and Web authors by allowing effectively device dependent implementations of W3C
standards which are different again from mainstream desktop implementations.

W3C’s unpractical standardisation efforts regarding Standard Vector Graphics (SVG)
threatens the Web on the mobile [Ann04]. SVG also suffers from several confusing
separate device dependent profiles, which are both subsets of the complex SVG
specification. One named SVG tiny and the other SVG basic [Cap04]. SVG is in-
compatible with CSS and it does not have the flexibility of switching to alternate
style sheets. It breaks the fundamental Web architecture of separating content and
style, by making it very difficult to distinguish between the two. SVG can be com-
pared to Flash multimedia, a self-contained format featuring content, graphics and
animation. It is seen as a format to offer slick entertaining clips of information to
mobile users. SVG does not scale like a text resize, instead it can be zoomed upon.
That leaves users with the uncomfortable action of magnifying and panning a pre-
sentation if the text size is too small, which will be a problem on varying small sizes
of mobile devices. SVG is unable to degrade unlike CSS. If currently widely deployed
UAs which do not support SVG attempt to view SVG content, that content will not
be rendered at all. On desktop devices SVG implementations have been heavy, very
limited and not widespread. SVG and its mobile profiles is a Web incompatible
specification.

W3C CSS media queries [LG02] at first inspection may be interpreted as encouraging
device dependent engineering. With media queries a developer can make different
style sheets for different device groups. The groups include screen for desktop de-
vices, handheld for mobile devices, print for printers, tv for television and so forth.
The groups are a little vague, especially with the environment of mobile devices
quickly becoming as capable as the “screen” media type. Another argument against
media types is that it devalues the notion of the Web medium. It does not treat the
Web as a media of its own and only considers it in the view port of other mediums
be it paper or television. CSS media queries serves the demands of designers who
are not concerned about information for each device, while still allowing an UA to
disable them. To its credit, the core requirements of device independent engineering
are assured. Media queries helps authors to create just one document that can then
be used on all devices, instead of authors needing to create one document per device,
which is far worse.

The W3C working group most concerned with the mobile device, is the device inde-
pendence work group [Wor01]. Previously this group originated from W3C’s User
Interface domain. The UI domain split into Document Formats and Interaction do-
main in July 2001. Document Formats was later was split again to Architecture and
some parts moved in the Interaction domain. The interaction domain first featured
the Mobile Access Activity which later was merged into the Device Independence

37

Activity. They have notably produced Composite Capability/Preference Profiles
(CC/PP) [KRW+04] and Authoring Techniques for Device Independence [HM04].

UA Profiles (CC/PP) was criticised earlier in section 3.1 for being difficult to parse,
having no temporal value and featuring alternating vocabulary to describe the de-
vice. However UA Profiles have been deployed successfully in commercial vertical
markets for identifying device capabilities as used for the MMS service which allows
mobile users to send and receive pictures. UA profiles outside the domain of these
mobile vertical markets is very hard to find.

If a device updates or installs another UA it is unclear how the UA profile is supposed
to reflect this. UA profiles only describe the UA deployed by the device’s vendor.
This limits consumer choice to the UA chosen by the vendor. If an alternate UA is
used, the externally referenced UA profile would have to be altered too, with great
difficulty. UA Profiles allow device vendors to monopolise UA developer’s domain.

The content types the UA profiles details are exactly the same information contained
in the HTTP headers given by the UA, except it is more difficult and expensive to
parse the RDF. The reasons for the duplication is probably for non-web UAs for
services such as MMS which do not fully implement HTTP like a Web UA should.
MMS should be a web application, but instead via UA profiles and a crippled UA,
mobile operators have made it an exclusive and lucrative service. Therefore UA
profiles does very little help to bring the Web to the mobile. Mobile operators
leverage these vertical market technologies from the W3C to create exclusive vertical
services, purposely separated from the Web and the desktop environment. UA
profiles does not promote device independence activity which contradicts this W3C
working group’s mission statement: “Access to a Unified Web from Any Device in
Any Context by Anyone”.

4 Engineering approaches

Four different engineering trends from device dependence to device independence
are evaluated.

4.1 Device dependent engineering

There are several forms of device dependent Web engineering, however they can be
all characterised by the way they output device dependent content. Unfortunately
device dependent engineering can be introduced in many guises in other publica-
tions such as multi-channel content, reusable user interfaces, device abstraction or
modelling [MPS03]. Some methods to add to the confusion may claim to be device
independent because of the intermediate language used. This abstraction layer fa-
cilitates and encourages authors to engineer and adapt their content for particular
user agents. These device dependent approaches will be argued against for their
costly complexity and maintenance demands.

38

Device dependent engineering is typified by the assumption that HTML is a device
dependent language. This is the unfortunate legacy of HTML without style sheets,
without content separated from style. HTML with embedded style with the abuse
of presentational markup is the typical reason why HTML can be found to work
inconsistently across UAs. Immature UAs also share some of the responsibility
for this misconception. Many UA implementations are flawed producing different
results to the same HTML without special attention to the particular UA by the
Web developer. Despite poor UA implementations, HTML is an UA independent
language.

User agents are heterogeneous across vendors, devices and version numbers. The
crucial problem is that these user agents fail to comply to Web standards in numer-
ous serious ways. Those that do not comply, often also fail to degrade gracefully.
Some other user agents might implement a non-standard proprietary extension which
brings significant usability gains for users when the author takes advantage of the
functionality. Therefore authors are often feel forced to address every user agent to
squeeze the most usability out of their immature Web UA implementations.

The most common methodology for device dependent Web pages is to embed con-
tent into static HTML templates and publish it for a particular device or rather
user agent. This is a simple way for Web developers to fine tune their content for
particular devices. Web developers usually lose some of this control when opting for
more abstraction, which may be needed especially for dynamic content. Modelling
is an high-level abstraction where an intermediate language shapes content dynam-
ically for particular devices in advance or immediately after UA capability sniffing.
Various models can be used, for example the task, domain, device, dialogue, presen-
tation and user model are abstracted in the intermediate language RDIXML. Some
abstraction is always needed as HTML itself can be argued to be an abstract inter-
face, however too much abstraction can make even very simple applications, very
complicated. HTML’s popularity and success lies within its relative simplicity.

Figure 8 describes how device dependent Web engineering works. There is typically
no third party involved in the content transformation. The bulk of the work happens
within the Web application using any one of the different markup, modelling or
templating languages to generate device dependent HTML for every UA. UA type
is determined either by various UA sniffing techniques or unique URLs.

Another reason for abstraction is the amount of heterogeneous devices and the dif-
ferent ways they are deemed to be used as information appliances. The browsing
navigation model versus the task or transaction orientated model argumentation
of the earlier WAP reappears. Instead of creating an information appliance for a
mobile, a desktop and a printer for example, an author can describe these devices
for generating content for. There are several available engines or languages perform
this functionality, such as:

• RDIXML

• MyXML

39

Figure 8: Device dependent engineering

• UIML

• WURFL

• Rendering Independent Markup Language

RDIXML is a task-based user interface language that breaks a Web application into
tasks. Each task is arbitrarily mapped on particular device groups, such as PDA
or WWW for desktop. The thesis describing RDIXML admits that its complex
structure hampers the intelligibility of the UI constructions and directly affects the
usability of the language. Additionally editing the XML is said to be error-prone
and time consuming [Mar02]. Other elements that may prove problematic is how
some task options are included or excluded on different devices, which would severely
limit multi-modal access.

MyXML is an implementation from the Device-Independent Web Engineering (DIWE)
[Kir02] framework, which is another heavy solution for outputting device dependent
content. MyXML combined with device dependent XSL, a compiler and four basic
run-time processors that require configuration in order to run as Web services that
provide “device independence support”. The novel element with MyXML compared
to other techniques is that it has provision for limited memory workarounds such
as page splitting and process partitioning for the generated Web applications. Al-
though splitting and process partitions requires an extra design effort. For every
device MyXML supports a XSL needs to be made, a huge maintenance cost. XSL is
a style sheet unlike CSS, is error prone and tedious to edit. The MyXML study ad-
mits the complexity demands of the approach required more than twice the amount
of time as a normal Web application.

40

The User Interface Markup Language (UIML) is another XML based language for
creating device-independent user interfaces. There are three stages in the UIML
approach [Ree02] :

1. Device independent user interface elements

2. Device dependent style definitions for user interface classes

3. Content database for specific user interface elements for internationalisation
and specific rendering environments

UIML is designed to be device independent, however it paradoxically performs this
in peers with a separate vocabulary for each device. The next problem with UIML
are how the user interface elements are based on Java user interface classes, which
departs in several ways from the simple HTML form controls. For example the
request and reply Web architecture does not implement UI synchronisation push
messages that UIML uses. The UIML style definitions unlike W3C’s CSS do not
degrade if the device is not explicitly defined or allow the Web user an option to
turn off the style sheet. Often the way HTML is generated is controlled by UIML
definition vocabularies which makes the content mapping from UIML to HTML
inflexible. HTML unlike generic user interfaces has hypertext features such as linking
which UIML clumsily provides [Kir02]. Other problems associated with UIML is that
content is inevitably intermixed with the user interface definition. UIML also does
not attempt to cover design and maintenance stages of Web applications. UIML to
its merit does has compilers for WML which older mobiles implement, VoiceXML
and Java. Java applications could be deployed and updated on the very popular
series 40 Nokia mobiles unlike their immature Web UAs, however they need to
comply to a reduced mobile edition of the Java API. UIML transcoders and services
are complex and suffer from performance issues [Ran03] which limits usability and
functionality of Web applications.

The project named Wireless Universal Resource File (WURFL) [Pas04] exists to
maintain a public database of devices in order for Web application developers to
abstract away device differences. WURFL aims to overcome several of UAProf
shortcomings. The WURFL project collects UA profiles from vendors and then
corrects the data known to be wrong or missing, though WURFL database does not
guarantee information to be correct and it is reliant on user contributions. WURFL’s
database can be installed locally instead of downloading UA profiles off vendor’s
websites, helping with performance. WURFL tracks over 400 devices with up to
100 capabilities and unlike some of the other device dependent engines has several
real world applications. WURFL has bindings for several programming languages
and accepts simple namespace prefixed syntax in HTML such as:

<wurfl:if capability="wap_push_support">

Push Services

</wurfl:if>

41

WURFL relies on UA sniffing which may not work on proxied connections. Dynamic
adaption via the WURFL clauses may suffer from performance scaling problems.
WURFL may tempt developers to squeeze usability by using non-standard device
standard capabilities without providing an adequate fall back. WURFL Web ap-
plications can quickly become complex with the different esoteric device dependent
options. When embedding WURFL into HTML, it does not cater for older mo-
biles with WML UAs. A developer would have to create another WAP application
for the countless legacy WAP enabled mobiles. A Web application could be using
WURFL as a kludge database to avoid UA bugs. There is a risk that certain mobile
UA developers may not fix problems that WURFL workaround, which encourages
more inelegant solutions. WURFL embedded in HTML may not address the device
dependent need of splitting content due to common size limits. Deploying WURFL
may prove too costly for simple static Web pages. WURFL highlights the imma-
ture state of mobile UAs, which often merits device dependent HTML generated by
WURFL to achieve even basic access to information.

The Consensus project [Con04] is a European funded consortium of companies which
produces the Rendering Independent Markup Language (RIML) specification and
prototype implementation. The project aim was to enable access to Web content
through run-time adaptation primarily for mobile devices. To clarify, RIML is not
adaption as it does not adapt Web content, it compiles its own RIML language.
Their approach like other device dependent techniques was to compile a list of devices
and their immature UA features in order to output device dependent content to.

RIML is based on W3C technologies XHTML 2.0, XForms [DKMR03], SMIL and
extensions. All these technologies are unlikely to be adopted by the Web. XHTML
2.0 for example is backwards incompatible with HTML or XHTML 1.0. XForms
is a very large specification which has been criticised for so many dependencies
such as Xpath and reuses so few of the technologies already implemented such as
JavaScript or HTML. RIML extensions include pagination, layout and navigation
in the language, utilising UA Profiles. The XML based language uses XSLT to
transform the RIML markup broken up into device classes to generate particular
content such as WML or XHTML.

The Consensus project claims to provide an implementation of a reverse proxy pro-
totype that supported the use of RIML with no installation required on the client
side. The prototype has a large amount of dependencies of resource hungry tools,
that this service would be warranted in order for widespread RIML adoption by
Web developers. Although it is unclear who take responsibility for such a service
and how would fit into the architecture of the Web.

Despite RIML’s strong support and funding, it is a another example of a heavy-
weight solution for generating device dependent code that is so complex that it is
impractical. The project has been inactive for several months, despite the code
being open sourced to attract developers. RIML is a sad testament to the unwork-
able W3C family of XML technologies in the last 5 years and their ignorance of the
language of the Web, HTML.

42

These methodologies are all trying to compensate for a limited UA, but instead of
the UA domain addressing the rendering of the Web application the Web developer
is. A UA is a complex implementation that is largely in the domain of the device
vendor to ensure compliance to Web standards and their device functionality. The
UA should have some responsibility of making sure a Web application is usable and
looks its best. For a content author to assume this role entirely that is in the also
domain of the UA is unbalanced. A content author should focus on content, not on
rendering issues of an immature UA.

Arguments for abstracting an application interface include voice, context and dif-
ferent paradigms of device usage. For reasons stated earlier in section 2.1, voice ab-
straction often proves unwarranted. Web applications in mobiles are often thought
to require different interfaces in different contexts, hence the suitability for abstrac-
tion. An application that behaves differently under different contexts risks breaking
multimodal access. There is no standard way of conveying contextual information
yet and the need for such information in popular Web applications today is often
unwarranted. There are also unresolved privacy concerns with most contextual in-
formation such as user location. Mobiles are also thought to utilise a task-based
usage paradigm rather than a browsing one. With the same arguments in section
2.2 regarding task based navigation, the need for abstraction can be rebutted.

In the beginning of this thesis in section 2 we explored the problem of defining and
describing a mobile. There are numerous obstacles to adequately define devices. You
simply can not rely on the vendor’s information or UA profiles for reasons iterated
earlier. The market is quickly moving and different UAs are introduced to market
every couple of weeks therefore device grouping could never be a one off solution.
The descriptions would constantly need updating and fine tuning. The risks of not
being vigilant is that a new device might not function with the device dependent
application. These device dependent outputs are likely to be incompatible between
user agents and break in unpredictable ways. Maintenance and testing costs tend
to increase with the sheer amount of user agents and their different versions on
the market. Often authors are inclined to only support popular devices to the
exclusion of less popular ones. It is impossible to gauge the demand of a Web
application with a device that has an unsupported UA that is unable to access it. It
is difficult to record the inevitable lost business, as mobile users do not have as much
opportunity to complain as email enabled desktop users. The usability problems of
device dependent engineering are hardly avoided by this abstraction, instead they
are arguably encouraged.

Different information on different devices will disrupt multimodal access. The for-
mats that these techniques generates are not just typically incompatible between
devices, the information can be also different. For example authors put more infor-
mation on a desktop device and more likely to strip off menus and verbose footers
for a mobile version. Another example is a URL that points to weather informa-
tion about Finland on a desktop version may display the weather of several Finnish
cities. On a mobile version the same URL address may only give the weather report
of Helsinki. Device dependent engineering facilitates unpredictable information loss

43

and inequality between devices.

Device dependent engineers typically generate different URLs for different devices.
The root could be for the desktop, /mobile for mobile devices and /tv for TV devices.
This pollutes URL space as in this case there could be three URLs pointing to the
same or different information. The URL scheme or structure devised by the host
is often difficult to design and predict, therefore users will find it difficult to find
the URL most appropriate for their esoteric device. Templating can encourage poor
URL addressing.

Generating device dependent content for many different UAs is expensive. Com-
plexity and logic can directly downgrade server performance and therefore many
methods generate pages periodically. This may mean some versions of the informa-
tion may be out of date compared to others. Another weakness is that there is likely
to be input the solution does not cater for.

As these pages are generated there is an emphasis on output. Information input,
dynamic and responsive information now becomes harder to facilitate by the author.
Static pages and static applications are much more likely with these techniques.

These methodologies do share several harmful common traits which affect device
independence goals that should be acknowledged and best avoided. Device depen-
dent techniques do cater for the millions of legacy UAs in existence, therefore not
utilising such a method would limit Web access for many millions until they upgrade
their UA. Due to the mobile device’s characteristic of being difficult to upgrade the
software, UA updates may be accomplished only when the consumer buys a new
device. As many people perceive browsing the Web as the failure of WAP, then
the attraction of a improved UA may not be enough. Some people however may be
forced to upgrade due to degradation of the mobile’s battery. This upgrade cycle
could be as long as a decade or more. In the long term the harmful implications of
adopting device dependent techniques arguably outweigh the short term benefits.

4.2 Adaption

The adaption methodology seen in figure 9 is a technique proposed by the W3C
which is more suitable to vertical markets than the Web. Adaption is proposed to
work by downloading the UA profile manufacturer’s site from the address given in
the header of the UA and parsed. Then a system not limited to the mobile device
can be employed to adapt Web content dynamically. The adaption system would
take in Web content and output content better suited for the limited UA of a mobile.
The adaption system is deployed as a proxy server in the domain of neither Web
developer or user agent. Using this technique could allow existing UAs to browse the
legacy Web of poor markup. As user agents can not be upgraded easily, adaption
is argued as a worthwhile technique to increase access. Conceivably the author
does not have to worry about ensuring the content is well formed or well designed,
as intermediate adaption will transcode the site to best fit the UA. Unfortunately
this middleware “silver bullet” fix amounts to a complex expert system, that is not

44

Figure 9: Adaption [HM04]

suitable for the heterogeneous inputs or outputs.

Generating and outputting device dependent content shares all the problems of
device dependent engineering discussed in section 4.1. Except with adaption we do
not know the author’s intent.

Information marked up in HTML can be distributed in a variety of incorrect ways
as authors are often not careful about semantics or separating style from content.
Old Web applications did not have the possibility of separating style from content
as CSS either was not around or unimplemented by leading UAs at the time. This
makes the task of parsing and tokenizing older content a considerable challenge.

Text/html may not be the only input to an adaption system. Style sheets, images
and proprietary formats such as Flash may also be input. The adaption system
should be able to accept this input, without losing any meaningful information.

One approach to identify elements in HTML is the Function-Based Object Model
(FOM) [CZS+01]. It tries to group elements of a Webpage into semantic units
by using general and specific rules and combining a myriad of techniques such as
image analysis, decision trees, semantic analysis, clustering and link analysis. These
various methods can be used effectively once the input structure has been analysed.
Research acknowledges if the input changes unexpectedly the effectiveness of these
methods decreases and they are expensive to update. This is why adaption is more
suitable for vertical markets as the adaption system can expect a certain controlled
quality of Web content as input. Web content with different designs and markups
are introduced constantly, therefore input rules would need to be maintained. Input
that isn’t stable and not well structured can not be transcoded easily.

The adaptive proxy may need to discard inappropriate redundant information like
needless options or advertisements in order to generate effective output for a small

45

screen. Determining the quality and type of information in an Web content input
stream is a near impossible problem. Some information may be left out with adapted
content for devices like mobiles, that could be important information such as the
authors details. Adaption needs to either intelligently guess the authors intent or the
content owner needs to get involved in order to produce reasonable results. Adaption
does not scale and is simply ineffective with the Web as its input.

It will not scale to all mobile devices unless there is a commitment to developing and
maintaining the system. This technique may work in a closed vertical market where
you understand the content and understand the UA, but on the Web this technique
is wholly inappropriate.

From the efforts of the W3C we have learnt how their work billed for Device Inde-
pendence such as XHTML and UA Profiles largely fail to address the real issues.
The authoring technique of adaption proposed by the device independence work
group was also shown to be flawed. However adaptive proxies do have the potential
to extend the functionality of an UA by outsourcing expensive operations.

4.3 UA support

Client

Server

Request(URL)

Proxy

User Agent

Response(Content)

Figure 10: Proxy and client providing an UA

As UA choice is especially limited for mobile users, UA functionality could be ex-
ported to a proxy as seen in figure 10. As UA Profiles are not adequate, if an UA
had expensive operations outsourced to a another more open platform then mobile
UA could be enhanced.

Opera software have a proxy service dependent on their specific mobile Opera UA
which works together to reduce traffic costs [Ope04b]. Opera’s proxy claims to
compress Web pages and eliminates unnecessary content before it is downloaded to
the mobile phones. Opera estimates a significant 65% reduction in traffic costs.

The Power Browser is another example of an UA and an adaptive proxy working
mutually [BKGM+02]. The proxy and UA work together to provide the user five

46

levels of summarised information. The UA prompts and displays special icons for
each mode while the proxy performs indexing, summarisation and produce keywords
for serving to the client at request. The proxy performs UA dependent features,
therefore they are reliant on one another and come together to provide a full featured
UA. To distinguish from adaption, the proxy is in the domain of the UA, not the
author or the network operator.

These architecture does have some scalability problems like that of adaption. Con-
ceivably the UA proxy could serve several UAs although this was not addressed
in the research. A proxy as an extension of the UA is a worthwhile approach to
overcoming device constraints to provide a better browsing experience on a mobile.

4.4 Device independence

Figure 11: Style and content are separated with an emphasis on the UA

Device independence is a discipline where a single Web interface works satisfactorily
on all devices without modification. That assumes that every device has an UA
that implements a minimum specification of de facto Web standards. That min-
imum specification today is a dynamic subset of W3C’s recommended standards.
The specifications revolve around changing de facto standards that have invariably
appeared due to various consequences of poor W3C leadership and UA implemen-
tations.

47

Harsh realities which feature quirky and incompliant W3C implementations, with
UAs such as the market leading Internet Explorer UA of the desktop device and the
Nokia UA of the mobile device. Hence Web developers can not rely on standards,
their work instead is awkwardly dependent on numerous esoteric UA implementa-
tions of varying quality.

Defining exactly what is the minimum common UA implementation required for a
Web application is relative and changing over time. The traits of today’s reasonable
Web UAs is one that implements HTTP, is able to accept invalid HTML and render
it, all of which are difficult to implement. Web applications often require more
from an UA, such as form processing for interaction, image handling and several
conventions such as navigation aids presented to the user. Competing UAs such as
Mozilla and Opera implement many more W3C standards than the minimum with
every limited release. The lowest common denominator between UA market leaders
is the moving target for Web application developers.

Validating Web applications to selected standards increases UA compatibility and
hence device independence. The common denominator between UAs today is typ-
ically HTML4. However every UA implements HTML4 support in different ways,
thanks to the ambiguity involved when liberally parsing HTML. Testing Web appli-
cations against targeted UAs is still very important, but validation services offered
by the W3C ensures other UAs will have a good chance of working too. In the
past UAs displayed specific behaviour independent of the device in order for Web
applications to depend on a particular vendor of the UA. If Web applications are
dependent on the eccentricities of a particular UA, then the vendor of that UA has
a monopoly. This is harmful for device independence due to close ties between a
device platform and the UA. For example if a Web application is dependent on a
particular UA that was not ported to all device platforms, the Web application de-
vice independence is limited. UA independence via Web application validation by
a more independent third party is fundamental to device independence. Validation
increases the chances for a Web application to function on all existing and future
user agents regardless of device.

Good Web applications are designed around short ambiguous URL structure, where
a single interface ensures consistency. When adapting or modelling for particular
UAs or device platforms different forms of Web content can come from a URL
such as http://example.com. In order to prevent confusion and ambiguity, many
Web applications are tempted to employ a unique and inconsistent URL schema
for effectively the same resource for different device or UA groupings. Examples of
this bad practise include http://mobile.example.com, http://example.com/pda
or even the proposed top level domain http://example.mobi [BL04]. With a single
common HTML interface the integrity of addressing of the Web is kept intact.
Multimodal access from different devices is supported with portable, mnemonic and
consistent URLs provided by URL design discipline.

With one Web interface generic proxying and caching becomes more effective. If a
Web resource offers differently tailored content to particular devices, then generic

48

caching may not work. For example if you are reading content from a Web applica-
tion from a desktop device which has been cached by a proxy that was previously
requested from a mobile device. The mobile dependent Web content on a desktop
UA may look inconsistent or lack information that the user expects. A single inter-
face generated by the device independent Web application means that generic Web
proxying can be employed to save network costs and time.

Having a single interface allows Web application developers to focus on their user
interface. With a myriad of generated HTML interfaces in the device dependent
methodologies it is easy to lose sight of how the user interface behaves. One interface
allows polishing that simply could not be catered for cheaply in modelling techniques.
Mobile UAs might catch errors of the common interface that affect desktop users
and vice versa. As there is less abstraction, a more robust and consistent application
will more likely result. Less resources can be spent on testing different interfaces on
different devices.

The practise of separating style from content into style sheets is the key to device
independent engineering. For new Web applications this is easier to achieve than
existing applications which do not already exploit CSS. Some common Web layouts
featuring columns are quite difficult to achieve in CSS, therefore some large changes
may need to be done to migrate across to CSS. CSS saves on bandwidth by caching
the style sheet that is typically used across a Web application. However CSS can
be poorly applied by being embedded in HTML and not in an external file. Hence
the bandwidth saving will be lost and make UAs less likely to able to control their
use. Having a style sheet separate from the HTML allows the UA to use it, switch
it for another or turn it off altogether. This allows content always to be accessible,
by removing a restrictive device dependent style that for example has too small
text. CSS facilitates the Web on the mobile platform by economising bandwidth
and allowing the possibility of controlling restrictive device dependent styles.

CSS support on popular mobile UAs on the Nokia series 40 is almost a regression,
but there are practises for Web developers to workaround these problems. Some
mobile UAs can not turn off CSS. There may be a good reason to turn off CSS, as
some early implementations are very slow or worse, simply incorrect. Non-existent
media types can be employed to turn off CSS styles before they come into affect.
Assuming that the UA in question does not query CSS media types and processes
CSS in order it is loaded, both of which applies to the Nokia UA, a workaround is
availably to avoid immature UA bugs.

The device independent methodology more likely requires the use of relative elastic
designs by Web application developers. As CSS media types can not possibly cover
all devices in existence, one can not statically style every screen size or device. Style
sheets need to be elastic enough to scale to every device. Unfortunately elastic
designs for developers are more difficult than static ones. Static designs are often
much easier to think about and implement for designers used to working with fixed
dimensions. A static design is comparable to the print medium, where page size
is known and exploited. Static designs are difficult for many user agents to render

49

satisfactory. With style sheets however, these restrictive static styles can be turned
off and hence avoided. Some advanced user agents such as Opera’s Small Screen
rendering can transform static designs into elastic ones to increase the pages of the
Web application’s scalability. However Web developers for the most part should give
up some restrictive control and aim for a relative scalable elastic design for their style
sheets. Generally Web developers should be designing for the device independent
Web medium, not the restrictive static screen or print mediums that tend to be
device dependent.

Whether screen sizes are large or small, the word count per HTML page should be
be kept to a minimum especially with this technique. Many mobile user agents have
small limits to what can be rendered at any one time. Pages that are too large are
usually not even partially rendered, they are not rendered at all. As it is difficult to
ascertain if this limit will be exceeded, the best practise of a minimum length should
be employed. Web developers could remove all whitespace on their content output
to save on precious bytes for example.

On larger screens too much text overwhelms a user, therefore this concise practise of
limiting length can be applied to good affect in the desktop domain too. Copyright
text and contact details typically found in footer texts of Web pages can often
be placed in meta tags in the head element of HTML to economise on screen real
estate and allow other programs such as the user agent to find this information more
efficiently. Form inputs and controls should also be kept to minimum by splitting
them across steps of the Web application. Filling in a long form is tiresome, however
filling it in stages can be more rewarding and help find problems in the input quicker.
The practise applies just as well on mobile user agents where large forms are known
to be problematic. Splitting input forms assists multi-modal access. A use case
whereby one begins filling entering input on a desktop and then finishes off the form
on a mobile is much more likely to succeed with a form in stages. Web application
data storage and security is the responsibility of the Web application, not the user
agent with this technique.

The acronym and abbreviation tool (AAT) is an example of a Web application
engineered to be device independent. As seen in the figures 12, 13, 14 and 15 in the
appendix of the thesis AAT works on any UA tested with it. Through editing the
URL or the single input and submit button an acronym can be looked up. The query
matches any string of an acronym or its expansion. The results list both the acronym
and its expansion. This Web application could be made more generic in order to
query any database table’s values. Although simple, this device independent Web
application demonstrates how information can be queried from any device with a
basic Web UA today.

Images as discussed do not scale and hence their use especially inline HTML should
be avoided. Some mobile user agents and their users are unable to turn off image
downloads, therefore a Web developer should take care not to use images alongside
HTML text. Direct hyperlinks to images are better practise, as it gives users and
user agents finer control on how to display that image. Allowing users to select an

50

image from a Web page saves gives the user more control on a typically expensive
mobile network connection. Direct hyperlinks allow user agents to display image
across the whole screen, which is a better practise on mobile devices with limited
screen size. Inline images in IMG tags within HTML on earlier mobile user agents
typically are inaccessible or assume a particular device dependent screen size. Due
to mobile characteristics such as limited memory sizes and high network costs inline
images should be avoided, with best practise is to link images instead.

Whilst external style sheets offer a migration path for existing Web applications,
new content types do not. The majority of existing user agents do not support
non-HTML content types. If a typical mobile UA opens SVG content, that con-
tent will not be able to be displayed at all. If a typical UA opens HTML content
with advanced unsupported style sheets, the user will still have access to content.
Therefore this technique is limited to HTML as the base for delivering information,
unless the vast majority Web content and user agents do not use HTML, which is
very unlikely. Existing mobile platforms unlike desktop platforms usually are un-
able to install plugins to support new content types. Device independence technique
requires new Web technology to be introduced via the ubiquitous Web text/html
content type.

5 Outlook

Electronic devices, networks and information technologies should be generic com-
modities. This aim is emphasised throughout this thesis and its acceptance and
support with each stakeholder playing their own role are needed to realise the In-
formation society.

Discriminating between devices, such as arguing the requirements of a device are
fundamentally different from another breeds inconsistency and inequality. This the-
sis has shown how difficult it is to define a mobile and how over a generation the
technical gap between a desktop and mobile has narrowed considerably.

Setbacks occur when assuming one device requires a fundamental different form of
navigation, markup or use than another device. The thesis dispelled further myths
such as mobile inputs being inadequate or that small screen outputs were insufficient
to read text.

This thesis affirms that the way we use a mobile device to access the Web, should be
no different to the way we use any other electronic device. When usage paradigms
are consistent across devices then we can achieve device independence where peo-
ple can switch between devices at no cost. The sheer convenience and usability
of multimodal access demands device interfaces converging on a generic UA Web
interface.

Discrimination between networks has limited mobiles. The thesis reaffirms the In-
ternet as the generic network for all devices to operate in. Attempts to separate
networks in order to monopolise a market fragments the distribution of information.

51

This thesis has shown how exclusive mobile vertical markets have harmed progress.
Mobile operators should become Internet service providers and compete in an open
equal market. Mobile operators need to bill for open network access in a generic
way, or risk discriminating users or fragmenting network access between fixed and
wireless.

Not viewing the Web as the single information interface and to shun HTML’s pro-
found achievements harms the growth of the Information society. The thesis has
shown how choosing anything else except the de facto language of the Web HTML
has limited, divided and slowed access to information. The Web is an evolving
medium in its own right. Viewing the Web through restrictive mediums such as
paper and television limits it. Static styles of a desktop screen restricts the Web to
the screen medium. The Web is a medium that must scale to any output, making it
profoundly different to mediums we are familiar with such as newspapers and cinema
projection screens. The Web is the superset medium in which other mediums should
be derived and it should not mimic other mediums as shown in device dependent
engineering.

Device manufacturers should refrain from needless differentiation of their devices,
such as Nokia’s keypad adjustments. A good generic responsive smooth scrolling
screen would be more competitive commodity strategy for example.

The operating system should become more generic and open in order to allow UA
software to update and upgrade. Proprietary platforms limit the entire Web by
forcing Web developers to cater for non-evolving User Agents which are dependent
on esoteric operating systems. UA developers need this generic open environment in
order to improve their UA. Mobile UAs have largely been left behind desktop UAs
because of the restrictive mobile platform. A generic operating system between
devices would help UAs evolve in the same conditions, promoting compatibility by
levelling the playing field for UA developers’ products.

Web developers should build applications for the Web medium or risk fragmenting
their work and focus. Up until adaption we saw Web developers taking the brunt
of the weight of making the Web work on different devices, as they have been let
down by poor user agents. Focusing on the Web medium requires switching to
device independent practises which is difficult for developers accustomed to fixed
dimensions of previous mediums.

Web users may also need to accept how information will be accessed through a
generic UA interface. Although premature, the Web user agent is likely to replace
the desktop rich client paradigm of access for most IT users. This may mean users
will have to accept often poor but simple usability of today’s Web form controls
instead of their rich clients of the past. Generic applications calls for generic and
stable usability.

The future for the device independent Web lies with HTML. The W3C Workshop
on Web Applications and Compound Documents in June 2004 puts mobile device
access again on a crossroads between impractical profiled XML based technologies
and de facto Web standards such as HTML tag soup.

52

In the first generation, WML was chosen instead of HTML. In the second generation
XHTML mobile profiles was chosen instead of HTML. Improving and extending the
various complex error prone XML technologies that favours narrow vertical mar-
kets with expensive device dependent solutions has been shown to be the wrong
approach. HTML tag soup is an undesirable erratic result of inevitable malformed
Web content, that is not going away. An effort willing to accept these realities and
provide direction is needed.

A collaboration between Opera Software developers of the Opera UA and the Mozilla
foundation developers of the Mozilla UA, has created the Web Hypertext Applica-
tion Technology work group (WHAT WG) [Web04b]. Their aim is to improve the
neglected HTML specification in order to realise the Web’s potential as an device
independent application platform. They propose that Web application technologies
should be based on familiar technologies such as HTML, CSS and JavaScript. This
allows a clear migration path for improvement as well as backwards compatibil-
ity via degradation. These design principles including problems like how to define
standardise error handling need to be addressed.

Already Opera has an UA port that ships on series 60 Nokia mobiles. Mozilla
also has an UA port for mobiles named Minimo. With Internet Explorer’s inactive
development and decreasing market share on desktop devices, this may allow Opera
and Mozilla to commodify the UA market. There is an exciting opportunity to push
both workable standards and UA development forward making the Web medium
easier to develop for and more usable regardless of device, unleashing the ubiquitous
information application.

Suggested further research should delve into practical development and testing for
Web UAs on mobile devices, together with distributed UA support from proxies.
One of the major open problems discussed with the Web API and the mobile device
is the need for a scalable bitmap image format. These topics as well as a commitment
to existing Web technologies such as HTML is required to develop the Web API for
greater access.

Despite these problems a new exciting era of ubiquitous computing via the popular
mobile device unified by the Web API can be realised now with a device independent
engineering approach.

References

ABD+01 Altheim, M., Boumphrey, F., Dooley, S., McCarron, S., Schnitzen-
baumer, S. and Wugofski, T., Modularization of XHTML.
World Wide Web Consortium, 2001. http://www.w3.org/TR/

xhtml-modularization/

Ann04 Anne van Kesteren, Unpractical specifications. 2004. http://

annevankesteren.nl/archives/2004/08/specifications

53

BBC04 BBC News, Mobile phone sales dial up record. 2004. http://news.

bbc.co.uk/2/hi/business/3454811.stm

BDDG03 Baudisch, P., DeCarlo, D., Duchowski, A. T. and Geisler, W. S., Focus-
ing on the essential: considering attention in display design. Commun.

ACM, 46,3(2003), pages 60–66.

BIM+00 Baker, M., Ishikawa, M., Matsui, S., Stark, P., Wugofski, T. and Ya-
makami, T., XHTML Basic. World Wide Web Consortium, 2000.
http://www.w3.org/TR/xhtml-basic/

BKGM+02 Buyukkokten, O., Kaljuvee, O., Garcia-Molina, H., Paepcke, A. and
Winograd, T., Efficient web browsing on handheld devices using page
and form summarization. ACM Trans. Inf. Syst., 20,1(2002), pages
82–115.

BL04 Berners-Lee, T., New Top Level Domains Considered Harmful. World
Wide Web Consortium, 2004. http://www.w3.org/DesignIssues/TLD

Cap04 Capin, T., Mobile SVG Profiles: SVG Tiny and SVG Basic. 2004.
http://www.w3.org/TR/SVGMobile/

CCVW04 Caldwell, B., Chisholm, W., Vanderheiden, G. and White, J., Web
Content Accessibility Guidelines 2.0 (Working Draft). World Wide Web
Consortium, 2004. http://www.w3.org/TR/WCAG20/

Con04 Consensus Project, Renderer-independent ML. 2004. http://www.

consensus-online.org/

CVJ01 Chisholm, W., Vanderheiden, G. and Jacobs, I., Web content accessi-
bility guidelines 1.0. interactions, 8,4(2001), pages 35–54.

CZS+01 Chen, J., Zhou, B., Shi, J., Zhang, H. and Fengwu, Q., Function-based
object model towards website adaptation. Proceedings of the tenth in-

ternational conference on World Wide Web. ACM Press, 2001, pages
587–596.

DKMR03 Dubinko, M., Klotz, L. L., Merrick, R. and Raman, T. V., XForms 1.0.
World Wide Web Consortium, 2003. http://www.w3.org/TR/xforms/

EMC04 EMC Database and GSM Association, GSM on target to connect bil-
lionth customer in Q1. 2004. http://www.gsmworld.com/news/press_
2004/press04_06.shtml

Eur04 European Commission, Information Society Policies. 2004. http://

europa.eu.int/information_society/policy/

Gar04 Gartner, Mobile Communications Worldwide: Methodology and Defini-
tions. 2004. http://www4.gartner.com/resources/119700/119794/

119794.pdf

54

GSM03 GSM Association, M-Services Phase II Evolution. 2003. http://www.

gsmworld.com/technology/services/

Hic02 Hickson, I., Sending XHTML as text/html Considered Harmful. http:
//hixie.ch/advocacy/xhtml

HM04 Hanrahan, R. and Merrick, R., Authoring Techniques for Device Inde-
pendence. World Wide Web Consortium, 2004. http://www.w3.org/

TR/di-atdi/

HMK98 Hjelm, J., Martin, B. and King, P., WAP Forum - W3C Cooperation
White Paper. 1998. http://www.w3.org/TR/NOTE-WAP

Hyl97 Hyland, T., Proposal for a Handheld Device Markup Language.
World Wide Web Consortium, 1997. http://www.w3.org/TR/

NOTE-Submission-HDML.html

Jac03 Jacobs, I., Architecture of the World Wide Web. World Wide Web
Consortium, 2003. http://www.w3.org/TR/webarch/

KAIM99 Kamada, T., Asada, T., Ishikawa, M. and Matsui, S., HTML 4.0
Guidelines for Mobile Access. World Wide Web Consortium, 1999.
http://www.w3.org/TR/1999/NOTE-html40-mobile-19990315/

Kam98 Kamada, T., Compact HTML for Small Information Appliances.
World Wide Web Consortium, 1998. http://www.w3.org/TR/1998/

NOTE-compactHTML-19980209/

Kir02 Kirda, E., Engineering Device-Independant Web Services. Master’s
thesis, Technical University of Vienna, 2002. http://www.infosys.

tuwien.ac.at/staff/ek/phd.pdf

KRW+04 Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler,
M. and Tran, L., Composite Capability/Preference Profiles (CC/PP):
Structure and Vocabularies 1.0. World Wide Web Consortium
Device Independence Group, 2004. http://www.w3.org/TR/2004/

REC-CCPP-struct-vocab-20040115/

LB96 Lie, H. W. and Bos, B., Cascading Style Sheets, level 1. World Wide
Web Consortium, 1996. http://www.w3.org/TR/REC-CSS1

LBLJ98 Lie, H. W., Bos, B., Lilley, C. and Jacobs, I., Cascading Style Sheets,
level 2. World Wide Web Consortium, 1998. http://www.w3.org/TR/
REC-CSS2

Lew03 Lewontin, S., Nokia Position Paper: W3C Workshop on Bi-
nary Interchange of XML Information Item Sets. Nokia, 2003.
http://www.w3.org/2003/08/binary-interchange-workshop/

02-Nokia-Position%-Paper_02.htm

55

LG02 Lie, H. W., C. T. and Glazman, D., Media Queries. World Wide Web
Consortium, 2002. http://www.w3.org/TR/css3-mediaqueries/

Lit02 Little Springs, Inc., An Overview of Mobile Versions of XHTML. 2002.
http://www.littlespringsdesign.com/design/xhtmlinfo.html

Mar02 Martikainen, A., An XML-based framework for Developing Usable
and Reusable User Interfaces for Multi-Channel Environments. Mas-
ter’s thesis, Deparment of Computer Science, University of Helsinki,
Helsinki, Finland, 2002. http://www.soberit.hut.fi/T-121/suomi/
Antti_Martikainen-gradu.pdf

MPS03 Mori, G., Paterné, F. and Santoro, C., Tool support for designing no-
madic applications. Proceedings of the 8th international conference on

Intelligent user interfaces. ACM Press, 2003, pages 141–148.

Nie96 Nielsen, J., Why Frames Suck (Most of the Time). 1996. http://www.
useit.com/alertbox/9612.html

Nie00 Nielsen, J., Readers’ Comments on WAP Backlash. Nielsen Nor-
man Group, 2000. http://www.useit.com/alertbox/20000709_

comments.html

Nie04 Nielsen//NetRatings, Three Out of Four Americans Have Access to
the Internet. 2004. http://www.nielsen-netratings.com/pr/pr_

040318.pdf

Nok04 Nokia, Web compliant User Agent Header. 2004. http://ncsp.forum.
nokia.com/download/?asset_id=11972

Ope01 Open Mobile Alliance, XSLT transformation sheets associated with
WAP 2.0. 2001. http://www.openmobilealliance.org/tech/

affiliates/wap/wapindex.html#xsl%t

Ope04a Opera Software, Opera for Smartphone/PDA. 2004. http://www.

opera.com/products/smartphone/

Ope04b Opera Software, Opera mobile accelerator. 2004. http://www.opera.

com/products/smartphone/accelerator/

Paa01 Paavilainen, J., Mobile Business Strategies. Wireless Press, 2001.

Pas04 Passani, L., Wireless Universal Resource File. 2004. http://wurfl.

sourceforge.net/

Ran03 Rantakokko, T., User Interface Adaption Based on Context. Mas-
ter’s thesis, University of Oulu, 2003. http://www.vtt.fi/virtual/

adamos/material/rantakokko_t_diploma_thesis.p%df

56

Ree02 Rees, M. J., Evolving the browser towards a standard user interface
architecture. Third Australasian conference on User interfaces. Aus-
tralian Computer Society, Inc., 2002, pages 1–7.

RHJ99 Raggett, D., Hors, A. L. and Jacobs, I., HTML 4.01 Specifica-
tion. World Wide Web Consortium, 1999. http://www.w3.org/TR/

html401/

Rya04 Ryan, J., European Internet statistics. 2004. http://www.altevie.

net/mediagraphix/europeaninternetstats/

The04 The Counter, Global browser statistics. 2004. http://www.

thecounter.com/stats/

Val00 Valdes, R., Waiting on WAP. 2000. http://www.newarchitectmag.

com/documents/s=4737/new1013637144/

WAP98a WAP Forum, WAP Architecture. 1998. http://tinyurl.com/ysxlh

WAP98b WAP Forum, WAP WAE. 1998. http://tinyurl.com/ysxlh

WAP01 WAP Forum, WAP CSS Specification. 2001. http://www.wapforum.

org/tech/documents/WAP-239-WCSS-20011026-a.pdf

WDSR02 Wugofski, T., Dominiak, D., Stark, P. and Roy, T., CSS Mobile Profile
1.0. World Wide Web Consortium, 2002. http://www.w3.org/TR/

css-mobile

Web04a Web Corp, Latest Mobile, GSM, Global, Handset, Base Station, and
Regional Cellular Statistics. 2004. http://www.cellular.co.za/

stats/stats-main.htm

Web04b Web Hypertext Application Technology work group, Position Pa-
per for the W3C Workshop on Web Applications and Compound
Documents. 2004. http://www.w3.org/2004/04/webapps-cdf-ws/

papers/opera.html

Wor01 World Wide Web Consortium, Device Independence Working Group
Homepage. 2001. http://www.w3.org/2001/di/

57

Appendix Acronym and Abbreviation Tool (AAT)

screenshots

Figure 12: Microsoft’s Internet Explorer user agent rendering AAT from a Desktop
PC

58

Figure 13: The Mozilla Firefox user agent rendering AAT from a Desktop PC

59

Figure 14: The Opera user agent rendering AAT from a Nokia 6600

Figure 15: Nokia’s in built user agent rendering AAT from a Nokia 6600

